

Welcome to DeepOBS

Warning

This DeepOBS version is under continious development and a beta of DeepOBS 1.2.0.

Many thanks to Aaron Bahde for spearheading the developement of DeepOBS 1.2.0.

[image: _images/deepobs_banner.png]

DeepOBS is a benchmarking suite that drastically simplifies, automates and
improves the evaluation of deep learning optimizers.

It can evaluate the performance of new optimizers on a variety of
real-world test problems and automatically compare them with
realistic baselines.

DeepOBS automates several steps when benchmarking deep learning optimizers:

	Downloading and preparing data sets.

	Setting up test problems consisting of contemporary data sets and realistic
deep learning architectures.

	Running the optimizers on multiple test problems and logging relevant
metrics.

	Automatic tuning of optimizer hyperparameters.

	Reporting and visualization the results of the optimizer benchmark.

[image: _images/deepobs.jpg]

The code for the current implementation working with TensorFlow and PyTorch can be found
on GitHub [https://github.com/fsschneider/DeepOBS/tree/v1.2.0-beta0].

User Guide

	Quick Start
	Installation

	Set-Up Data Sets

	Contributing to DeepOBS

	Simple Example
	Create new Run Script

	Run new Optimizer

	Analyzing the Runs

	Overview
	Data Downloading

	Data Loading

	Model Loading

	Runners

	Baseline Results

	Runtime Estimation

	Visualization

	Suggested Protocol
	Decide for a Framework

	Create new Run Script

	(Possibly) Write Your Own Runner

	Identify Tunable Hyperparameters

	Decide for a Tuning Method

	Specify the Tuning Domain

	Bound the Tuning Resources

	Report Stochasticity

	Run on a Variety of Test Problems

	Plot Results

	Report Measures for Speed

	How to Write Customized Runner
	Decide for a Framework

	Implement the Training Loop

	Read in Hyperparameters and Training Parameters from the Command Line

	Specify How the Hyperparameters and Training Parameters Should Be Added to the Run Name

	Tuning Automation
	Grid Search

	Random Search

	Bayesian Optimization (GP)

API Reference

	Analyzer
	Validate Output

	Plot Optimizer Performances

	Get the Best Runs

	Plot Hyperparameter Sensitivity

	Estimate Runtime

	TensorFlow
	Data Sets

	Test Problems

	Runner

	Config

	PyTorch
	Data Sets

	Test Problems

	Runner

	Config

	Tuner
	Grid Search

	Random Search

	Gaussian Process

	Tuner

	Parallelized Tuner

	Tuning Utilities

	Scripts
	Prepare Data

	Download Baselines

	Plot Results

	Config

Indices and tables

	Index

	Search Page

Quick Start

DeepOBS is a Python package to benchmark deep learning optimizers.
It supports TensorFlow and PyTorch.

We tested the package with Python 3.6, TensorFlow version 1.12 and Torch version 1.1.0.
Other versions of Python and TensorFlow (>= 1.4.0) might work, and we plan to
expand compatibility in the future.

Installation

You can install the latest try-out version of DeepOBS using pip:

pip install -e git+https://github.com/abahde/DeepOBS.git@master#egg=DeepOBS

Note

The package requires the following packages:

	argparse

	numpy

	pandas

	matplotlib

	tikzplotlib

	seaborn

TensorFlow is not a required package to allow for both the CPU and GPU version. Make sure that one of those is installed. Additionally, you have to install torch/torchvision if you want to use the PyTorch framework.

Hint

We do not specify the exact version of the required package. However, if any
problems occur while using DeepOBS, it might be a good idea to upgrade those
packages to the newest release (especially matplotlib and numpy).

Set-Up Data Sets

If you use TensorFlow, you have to download the data sets for the test
problems. This can be done by simply running the
Prepare Data script:

deepobs_prepare_data.sh

This will automatically download, sort and prepare all the data sets
(except ImageNet) in a folder called data_deepobs in the current directory.
It can take a while, as it will download roughly 1 GB.

Note

The ImageNet data set is currently excluded from this automatic downloading
and preprocessing. ImageNet requires a registration to do this and has a total
size of hundreds of GBs. You can download it and add it to the imagenet
folder by yourself if you wish to use the ImageNet data set.

Hint

If you already have some of the data sets on your computer, you can only
download the rest. If you have all data sets, you can skip this step, and
always tell DeepOBS where the data sets are located. However, the DeepOBS
package requires the data sets to be organized in a specific way.

If you use PyTorch, the data downloading will be handled automatically by torchvision.

You are now ready to run different optimizers on various test problems. We
provide a Simple Example for this, as well as our
Suggested Protocol for benchmarking deep learning optimizers.

Contributing to DeepOBS

If you want to see a certain data set or test problem added to DeepOBS, you
can just fork DeepOBS, and implemented following the structure of the existing
modules and create a pull-request. We are very happy to expand DeepOBS with
more data sets and models.

We also invite the authors of other optimization algorithms to add their own
method to the benchmark. Just edit a run script to include the new optimization
method and create a pull-request.

Provided that this new optimizer produces competitive results, we will add the
results to the set of provided baselines.

Simple Example

This tutorial will show you an example of how DeepOBS can be used to benchmark
the performance of a new optimization method for deep learning.

This simple example aims to show you some basic functions of DeepOBS, by
creating a run script for a new optimizer (we will use the Momentum optimizer
as an example here) and running it on a very simple test problem.

We show this example for TensorFlow and PyTorch respectively.

Create new Run Script

The easiest way to use DeepOBS with a new optimizer is to write a run script for
it. This run script will import the optimizer and list its hyperparameters. For the Momentum optimizer in TensorFlow this is

"""Example run script using StandardRunner."""

import tensorflow as tf

from deepobs import tensorflow as tfobs

optimizer_class = tf.train.MomentumOptimizer
hyperparams = {
 "learning_rate": {"type": float},
 "momentum": {"type": float, "default": 0.99},
 "use_nesterov": {"type": bool, "default": False},
}

runner = tfobs.runners.StandardRunner(optimizer_class, hyperparams)
runner.run()

You can download this example run script tensorflow and use it as a template.

For the Momentum optimizer in PyTorch it is

"""Example run script using StandardRunner."""

from torch.optim import SGD

from deepobs import pytorch as pt

optimizer_class = SGD
hyperparams = {
 "lr": {"type": float},
 "momentum": {"type": float, "default": 0.99},
 "nesterov": {"type": bool, "default": False},
}

runner = pt.runners.StandardRunner(optimizer_class, hyperparams)
runner.run()

You can download this example run script pytorch and use it as a template.

The DeepOBS runner needs access to an optimizer class with the same API
as the TensorFlow/PyTorch optimizers and a list of additional hyperparameters for this
new optimizers.

Run new Optimizer

You can now just execute the above mentioned script to run Momentum on the quadratic_deep test problem.
You can change the arguments in the run() method to run other test problems, other hyperparameter settings, different number of epochs, etc..
If you want to make the script command line based, you can simply remove all arguments in the run() method an parse them from the command line.
For TensorFlow this would look like this:

python runner_momentum_tensorflow.py quadratic_deep --bs 128 --learning_rate 1e-2 --momentum 0.99 --num_epochs 10

We will run it a couple times more this time with different learning_rates

python runner_momentum_tensorflow.py quadratic_deep --bs 128 --learning_rate 1e-3 --momentum 0.99 --num_epochs 10
python runner_momentum_tensorflow.py quadratic_deep --bs 128 --learning_rate 1e-4 --momentum 0.99 --num_epochs 10
python runner_momentum_tensorflow.py quadratic_deep --bs 128 --learning_rate 1e-5 --momentum 0.99 --num_epochs 10

For PyTorch this would look like this:

python runner_momentum_pytorch.py quadratic_deep --bs 128 --lr 1e-2 --momentum 0.99 --num_epochs 10

We will run it a couple times more this time with different lr

python runner_momentum_pytorch.py quadratic_deep --bs 128 --lr 1e-3 --momentum 0.99 --num_epochs 10
python runner_momentum_pytorch.py quadratic_deep --bs 128 --lr 1e-4 --momentum 0.99 --num_epochs 10
python runner_momentum_pytorch.py quadratic_deep --bs 128 --lr 1e-5 --momentum 0.99 --num_epochs 10

Analyzing the Runs

We can use DeepOBS's analyzer module to automatically find the best hyperparameter setting. First note, that the runner writes the output in a directory tree like:

<results_name>/<testproblem>/<optimizer>/<hyperparameter_setting>/

In the above example, the directory of the run outputs for TensorFlow would be:

./results/quadratic_deep/MomentumOptimizer/...

And for PyTorch:

./results/quadratic_deep/SGD/...

We pass the path to the optimizer directory to the analyzer functions. This way, we can get the best performance setting, a plot for the corresponding training curve and a plot that visualizes the hyperparameter sensitivity.

For TensorFlow and PyTorch:

from deepobs import analyzer

get the overall best performance of the MomentumOptimizer on the quadratic_deep testproblem
performance_dic = analyzer.get_performance_dictionary("./results/quadratic_deep/SGD")
print(performance_dic)

plot the training curve for the best performance
analyzer.plot_optimizer_performance("./results/quadratic_deep/SGD")

plot again, but this time compare to the Adam baseline
analyzer.plot_optimizer_performance(
 "./results/quadratic_deep/SGD",
 reference_path="../DeepOBS_Baselines/baselines_tensorflow/quadratic_deep/MomentumOptimizer",
)

You need to change the results directory accordingly, i.e. in our example it would be

'./results/quadratic_deep/SGD'

for TensorFlow (as in the example above) and

'./results/quadratic_deep/MomentumOptimizer'

for PyTorch.

You can download the script and use it as a template for further analysis:
example analyze script tensorflow.

Note that you can also select a reference path (here the deepobs baselines for TensorFlow) to plot reference results as well. You can download the latest baselines from GitHub [https://github.com/abahde/DeepOBS_Baselines]

Overview

DeepOBS provides modules and scripts for the full stack required to rapidly,
reliably and reproducibly benchmark deep learning optimizers.

Here we briefly described the different levels of automation that DeepOBS
provides. While, they are built hierarchically, they can be used separately.
For example, one can use just the data loading capabilities of DeepOBS and built
a new test problem on top of it.

A more detailed description of the modules and scripts can be found in the API
reference section.

[image: ../_images/stack.png]

Data Downloading

DeepOBS can automatically download and pre-process all necessary data sets.
This includes

	MNIST [http://yann.lecun.com/exdb/mnist/]

	Fashion-MNIST (FMNIST) [https://github.com/zalandoresearch/fashion-mnist]

	CIFAR-10 [https://www.cs.toronto.edu/~kriz/cifar.html]

	CIFAR-100 [https://www.cs.toronto.edu/~kriz/cifar.html]

	Street View House Numbers (SVHN) [http://ufldl.stanford.edu/housenumbers/]

	Leo Tolstoi's War and Peace

Note

While ImageNet [http://www.image-net.org/] is part of DeepOBS, it is
currently not part of the automatic data downloading pipeline mechanic.
Downloading the ImageNet data set requires an account and can take a lot
of time to download. Additonally, it requires quite a large amount of memory.
The best way currently is to download and preprocess the ImageNet data set
separately if needed and move it into the DeepOBS data folder.

The automatic data preparation for the TensorFlow version script can be run using

deepobs_prepare_data.sh

and is described in the API section under
Prepare Data.

For the PyTorch version the data preparation is mostly done automatically by Torchvision. If you use a test problem
where the data set is not available in Torchvision (e.g. Tolstoi's War and Peace) you can execute the above mentioned
script for the PyTorch version as well.

Data Loading

The DeepOBS data loading module then performs all necessary processing of the
data sets to return inputs and outputs for the deep learning model (e.g. images
and labels for image classification). This processing includes splitting,
shuffling, batching and data augmentation. The data loading module can also be
used to build new deep learning models that are not (yet) part of DeepOBS.

The outputs of the data loading module is illustrated in the figure below and is
further described in the API section for TensorFlow (Data Sets)
and PyTorch (Data Sets) respectively.

[image: ../_images/ImageNetOutput.png]

Model Loading

Together, data set and model define a loss function and thus an optimization
problem. We selected problems for diversity of task as well as the difficulty of
the optimization problem itself. The list of test problems of DeepOBS includes
popular image classification models on data sets like MNIST, CIFAR-10 or
ImageNet, but also models for natural language processing and generative
models.

Additionally, three two-dimensional problems and an ill-conditioned quadratic
problem are included. These simple tests can be used as illustrative toy
problems to highlight properties of an algorithm and perform sanity-checks.

Over time, we plan to expand this list when hardware and research progress
renders small problems out of date, and introduces new research directions and
more challenging problems.

The implementation of the models is described in the API section under
Test Problems and Test Problems respectively.

Runners

The runners of the DeepOBS package handle training and the logging of statistics
measuring the optimizer's performance. For optimizers following the standard
TensorFlow or PyTorch optimizer API it is enough to provide the runners with a list of the
optimizer’s hyperparameters. We provide a template for this, as well as an
example of including a more sophisticated optimizer that can’t be described as
a subclass of the TensorFlow or PyTorch optimizer API.

In the API section, we describe the runners for TensorFlow and PyTorch and in
the Simple Example we show an example of creating a run script for a new
optimizer.

Baseline Results

DeepOBS also provides realistic baselines results for, currently, the three most
popular optimizers in deep learning, SGD, Momentum, and Adam.
These allow comparing a newly developed algorithm to the competition without
computational overhead, and without risk of conscious or unconscious bias
against the competition.

Baselines for further optimizers will be added when authors provide the
optimizer’s code, assuming the method perform competitively. Currently,
baselines are available for all test problems in the small and large benchmark
set.

The current baselines can be downloaded from github [https://github.com/abahde/DeepOBS_Baselines].

Runtime Estimation

In the current DeepOBS version, runtime estimation is not yet available.

Visualization

The DeepOBS analyzer module reduces the overhead for the preparation of
results, and simultaneously standardizes the presentation, making it possible to
include a comparably large amount of information in limited space. A more detailed description
can be found in its API reference: Analyzer. We also procide an example: Simple Example

Suggested Protocol

Here we provide a suggested protocol for more rigorously benchmarking deep
learning optimizer. Some of the steps were discussed in the DeepOBS [https://openreview.net/forum?id=rJg6ssC5Y7] paper. Others were
derived in the Master's thesis of Aaron Bahde.

Decide for a Framework

DeepOBS versions >= 1.2.0 support TensorFlow and PyTorch. We ran some basic experiments
to check whether these two frameworks can be used interchangeably. So far, we strongly
recommend to NOT compare benchmarks (with DeepOBS) across these frameworks. Currently,
we only provide baselines for PyTorch.

You can choose between PyTorch and TensorFlow by switching the import statements:

for example import the standard runner from the pytorch submodule
from deepobs.pytorch.runners import StandardRunner
or from the tensorflow submodule
from deepobs.tensorflow.runners import StandardRunner

Create new Run Script

In order to benchmark a new optimization method a new run script has to be
written. A more detailed description can be found in the Simple Example and
the API section for TensorFlow (Standard Runner)
and PyTorch (Standard Runner).
Essentially, all which is needed is the optimizer itself and a list of its hyperparameters. For example
for the Momentum optimizer in Tensorlow this will be:

"""Example run script using StandardRunner."""

import tensorflow as tf

from deepobs import tensorflow as tfobs

optimizer_class = tf.train.MomentumOptimizer
hyperparams = {
 "learning_rate": {"type": float},
 "momentum": {"type": float, "default": 0.99},
 "use_nesterov": {"type": bool, "default": False},
}

runner = tfobs.runners.StandardRunner(optimizer_class, hyperparams)
runner.run()

And in PyTorch:

"""Example run script using StandardRunner."""

from torch.optim import SGD

from deepobs import pytorch as pt

optimizer_class = SGD
hyperparams = {
 "lr": {"type": float},
 "momentum": {"type": float, "default": 0.99},
 "nesterov": {"type": bool, "default": False},
}

runner = pt.runners.StandardRunner(optimizer_class, hyperparams)
runner.run()

(Possibly) Write Your Own Runner

You should at first try to execute your optimizer with one of the implemented runner classes.
If this does not work out, because your optimizer needs additional access to the training loop,
you have to write your own runner class. We provide a description how to do this:
How to Write Customized Runner

Identify Tunable Hyperparameters

We suggest that you decide which hyperparameters of your optimizer needs to be tuned before starting the benchmark.
For every test problem you should tune exactly the same hyperparameters with the
same resources and the same tuning method. This avoids overfitting of hyperparameters on specific test problems.

Decide for a Tuning Method

We provide three tuning classes in DeepOBS. You should use one of them:

Grid Search
Bayesian optimization with a Gaussian process surrogate
Random Search
from deepobs.tuner import GP, GridSearch, RandomSearch

Ideally, you use the same tuning method that we used for the baselines. At the moment this is grid search.

Specify the Tuning Domain

Prospective users of your optimizer expect you to provide information about how to tune
your optimizer in any application. Therefore, you should provide promising search domains.
They should be the same for all test problems since the users do not know the link between
your optimizer's hyperparameters and the application.
In DeepOBS you can user the tuning specifications of each tuner class. This is an example
for the Momentum optimizer in PyTorch:

import numpy as np
from scipy.stats.distributions import binom, uniform
from torch.optim import SGD

from deepobs.pytorch.runners import StandardRunner
from deepobs.tuner import GP, GridSearch, RandomSearch
from deepobs.tuner.tuner_utils import log_uniform

define optimizer
optimizer_class = SGD
hyperparams = {
 "lr": {"type": float},
 "momentum": {"type": float},
 "nesterov": {"type": bool},
}

Grid Search
The discrete values to construct a grid for.
grid = {
 "lr": np.logspace(-5, 2, 6),
 "momentum": [0.5, 0.7, 0.9],
 "nesterov": [False, True],
}

Make sure to set the amount of resources to the grid size. For grid search, this is just a sanity check.
tuner = GridSearch(
 optimizer_class,
 hyperparams,
 grid,
 runner=StandardRunner,
 ressources=6 * 3 * 2,
)

Random Search
Define the distributions to sample from
distributions = {
 "lr": log_uniform(-5, 2),
 "momentum": uniform(0.5, 0.5),
 "nesterov": binom(1, 0.5),
}

Allow 36 random evaluations.
tuner = RandomSearch(
 optimizer_class,
 hyperparams,
 distributions,
 runner=StandardRunner,
 ressources=36,
)

Bayesian Optimization
The bounds for the suggestions
bounds = {"lr": (-5, 2), "momentum": (0.5, 1), "nesterov": (0, 1)}

Corresponds to rescaling the kernel in log space.
def lr_transform(lr):
 return 10 ** lr

Nesterov is discrete but will be suggested continious.
def nesterov_transform(nesterov):
 return bool(round(nesterov))

The transformations of the search space. The momentum parameter does not need a transformation.
transformations = {"lr": lr_transform, "nesterov": nesterov_transform}

tuner = GP(
 optimizer_class,
 hyperparams,
 bounds,
 runner=StandardRunner,
 ressources=36,
 transformations=transformations,
)

Bound the Tuning Resources

The tuning of your optimizer's hyperparameters should never exceed the number of instances
that were used for the baselines. Less is always better. For our current baselines we used 20 instances for each optimizer
on each test problem. Use the ressources argument in the tuner class instantiation to limit them.

Report Stochasticity

To get an understanding of the robustness of the optimizer against training noise we
recommend to rerun the best hyperparameter instance of your optimizer with 10 different random seeds.
The tuning classes can automatically take care of it:

import numpy as np
from torch.optim import SGD

from deepobs.pytorch.runners import StandardRunner
from deepobs.tuner import GridSearch

define optimizer
optimizer_class = SGD
hyperparams = {"lr": {"type": float}}

Grid Search
The discrete values to construct a grid for.
grid = {"lr": np.logspace(-5, 2, 6)}

init tuner class
tuner = GridSearch(
 optimizer_class, hyperparams, grid, runner=StandardRunner, ressources=6
)

tune on quadratic test problem and automatically rerun the best instance with 10 different seeds.
tuner.tune("quadratic_deep", rerun_best_setting=True)

Run on a Variety of Test Problems

Benchmark results might vary a lot for different test problems. We recommend to run
your optimizer on as many test problems as possible but (of course) focus on the ones
we use for the baselines. We provide a 'small' test set and a 'large' test set that, in our opinion,
reflects a good variety of test problems. They are accessible as global variables in DeepOBS.
One way to use them is to automatically tune your optimizer on the recommendations:

import numpy as np
from torch.optim import SGD

from deepobs.config import get_small_test_set
from deepobs.pytorch.runners import StandardRunner
from deepobs.tuner import GridSearch

define optimizer
optimizer_class = SGD
hyperparams = {"lr": {"type": float}}

Grid Search
The discrete values to construct a grid for.
grid = {"lr": np.logspace(-5, 2, 6)}

init tuner class
tuner = GridSearch(
 optimizer_class, hyperparams, grid, runner=StandardRunner, ressources=6
)

get the small test set and automatically tune on each of the contained test problems
small_testset = get_small_test_set()
tuner.tune_on_testset(
 small_testset, rerun_best_setting=True
) # kwargs are parsed to the tune() method

Plot Results

To visualize the final results, the user can use the Analyzer API.
We recommend to include a plot about the hyperparameter sensitivity and to plot your
optimizer performance against the baselines:

from deepobs.analyzer.analyze import (plot_hyperparameter_sensitivity,
 plot_optimizer_performance)

plot your optimizer against baselines
plot_optimizer_performance(
 "/<path to your results folder>/<test problem>/<your optimizer>",
 reference_path="<path to the baselines>/<test problem>/SGD",
)

plot the hyperparameter sensitivity (here we use the learning rate sensitivity of the SGD baseline)
plot_hyperparameter_sensitivity(
 "<path to the baselines>/<test problem>/SGD",
 hyperparam="lr",
 xscale="log",
 plot_std=True,
)

Report Measures for Speed

DeepOBS calculates the speed of your optimizer as a fraction of epochs that it needs
to reach the convergence performance of the baselines. This measure is included
automatically in the overview table generated by the Analyzer. Additionally, you can calculate an estimate
for wall-clock time performance in comparison to SGD. More details can be found in
the DeepOBS [https://openreview.net/forum?id=rJg6ssC5Y7] paper

from torch.optim import Adam

from deepobs.analyzer.analyze import estimate_runtime, plot_results_table
from deepobs.pytorch.runners import StandardRunner

plot the overview table which contains the speed measure for iterations
plot_results_table(
 "<path to your results>",
 conv_perf_file="<path to the convergence performance file of the baselines>",
)

briefly run your optimizer against SGD to estimate wall-clock time overhead, here we use Adam as an example
estimate_runtime(
 framework="pytorch",
 runner_cls=StandardRunner,
 optimizer_cls=Adam,
 optimizer_hp={"lr": {"type": float}},
 optimizer_hyperparams={"lr": 0.1},
)

How to Write Customized Runner

Some optimizers have special requirements. For example, they need access to the training loop and, therefore, cannot use
DeepOBS as a black box function. Or, the hyperparameters of the optimizer are somewhat special (e.g. other optimizer instances).
For these cases, we give the users the possibility to write their own Runner class.
Here, we describe in more detail what you have to do for that.

Decide for a Framework

Since the latest DeepOBS version comes with TensorFlow and PyTorch implementations you first have to decide on the framework
to use. If you decide for TensorFlow your Runner must inherite from the TFRunner class. It can be found in the API section
TF Runner.

If you decide for PyTorch your Runner must inherite from the PTRunner class. It can be found in the API section
PT Runner

Implement the Training Loop

The most import implementation for your customized runner is the method training which runs the training loop
on the testproblem. Its basic signature can be found in the API section for TF Runner
and PT Runner respectively. Concrete example implementations
can be found in the Runner classes that come with DeepOBS. We recommend copying one of those and adapt it to your needs.
In principle, simply make sure that the output dictionary is filled with the metrices test_accuracies,
valid_accuracies, train_accuracies, test_losses, valid_losses and tain_losses during training.
Additionally, we distinguish between hyperparameters (which are the parameters that are used to initialize
the optimizer) and training parameters (which are used as additional keyword arguments in the training loop).

For the PyTorch version we would like to give some useful hints:

1. A deepobs.pytorch.testproblems.testproblem instance holds the attribute net which is the model that is to be trained.
This way, you have full access to the model parameters during training.

2. Somewhat counterintuitively, we implemented a method get_batch_loss_and_accuracy for each testproblem. This method
gets the next batch of the training set and evaluates the forward path. We implemented a closure such that you can
call the forward path several times within the trainig loop (e.g. a second time after a parameter update). For this,
simply set the argument return_forward_func = True of get_batch_loss_and_accuracy.

3. A deepobs.pytorch.testproblems.testproblem instance holds the attribute regularization_groups. It can be used
to modify the way your optimizer deals with the regularization.

Read in Hyperparameters and Training Parameters from the Command Line

To use your Runner scripts from the command line, you have to specify the way the hyper and training parameters
should be read in by argparse. For that, you can overwrite the methods _add_training_params_to_argparse and
_add_hyperparams_to_argparse. For both frameworks, examples can be found in the LearningRateScheduleRunner.

Specify How the Hyperparameters and Training Parameters Should Be Added to the Run Name

Each individual run ends with writing the output to a well structured directory tree. This is important for later analysis
of the results. To specify how your hyper and training parameters should be used for the naming of the setting
directories, you have to overwrite the methods _add_training_params_to_output_dir_name and
_add_hyperparams_to_output_dir_name. For both frameworks, examples can be found in the LearningRateScheduleRunner.

Tuning Automation

To address the unfairness that arises from the tuning procedure, we implemented a tuning automation in DeepOBS.
Here, we describe how to use it. We also provide some basic functionalities to monitor the tuning process.
These are not explained here, but can be found in the API section of the Tuner. We further
describe a comperative and fair usage of the tuning automation in the Suggested Protocol.

We provide three different Tuner classes: GridSearch, RandomSearch and GP
(which is a Bayesian optimization method with a Gaussian Process surrogate). You can find detailed information about them
in the API section Tuner. We will show all examples in this section for the PyTorch framework.

Grid Search

To perform an automated grid search you first have to create the Tuner instance. The optimizer class and its hyperparameters
have to be specified in the same way like for Runners. Additionally, you have to give a dictionary that holds the
discrete values of each hyperparameter. By default, calling tune will execute the whole tuning process in a sequential
way on the given hardware.

If you want to parallelize the tuning process you can use the method generate_commands_script.
It generates commands than can be send to different nodes. If the format of the command string is not correct for your
training or hyper parameters you have to overwrite the methods _generate_kwargs_format_for_command_line and
_generate_hyperparams_format_for_command_line of the ParallelizedTuner accordingly. Note that the generated
commands refer to a run script that you have to specify on your own. Here, as an example, the generated commands refer to
a standard SGD script

import numpy as np
from torch.optim import SGD

from deepobs.pytorch.runners import StandardRunner
from deepobs.tuner import GridSearch

optimizer_class = SGD
hyperparams = {
 "lr": {"type": float},
 "momentum": {"type": float},
 "nesterov": {"type": bool},
}

The discrete values to construct a grid for.
grid = {
 "lr": np.logspace(-5, 2, 6),
 "momentum": [0.5, 0.7, 0.9],
 "nesterov": [False, True],
}

Make sure to set the amount of ressources to the grid size. For grid search, this is just a sanity check.
tuner = GridSearch(
 optimizer_class, hyperparams, grid, runner=StandardRunner, ressources=6 * 3 * 2,
)

Tune (i.e. evaluate every grid point) and rerun the best setting with 10 different seeds.
tuner.tune('quadratic_deep', rerun_best_setting=True, num_epochs=2, output_dir='./grid_search')

Optionally, generate commands for a parallelized execution
tuner.generate_commands_script(
 "quadratic_deep",
 run_script="../runner_momentum_pytorch.py",
 num_epochs=2,
 output_dir="./grid_search",
 generation_dir="./grid_search_commands",
)

You can download this example and use it as a template.

Random Search

For the random search, you have to give a dictionary that holds the
distributions for each hyperparameter:

from scipy.stats.distributions import binom, uniform
from torch.optim import SGD

from deepobs import config
from deepobs.pytorch.runners import StandardRunner
from deepobs.tuner import RandomSearch
from deepobs.tuner.tuner_utils import log_uniform

optimizer_class = SGD
hyperparams = {
 "lr": {"type": float},
 "momentum": {"type": float},
 "nesterov": {"type": bool},
}

Define the distributions to sample from
distributions = {
 "lr": log_uniform(-5, 2),
 "momentum": uniform(0.5, 0.5),
 "nesterov": binom(1, 0.5),
}

Allow 36 random evaluations.
tuner = RandomSearch(
 optimizer_class, hyperparams, distributions, runner=StandardRunner, ressources=36,
)

Tune (i.e. evaluate 36 different random samples) and rerun the best setting with 10 different seeds.
tuner.tune(
 "quadratic_deep",
 rerun_best_setting=True,
 num_epochs=2,
 output_dir="./random_search",
)

Optionally, generate commands for a parallelized execution
tuner.generate_commands_script(
 "quadratic_deep",
 run_script="../runner_momentum_pytorch.py",
 num_epochs=2,
 output_dir="./random_search",
 generation_dir="./random_search_commands",
)

You can download this example and use it as a template.

Bayesian Optimization (GP)

The Bayesian optimization method with a Gaussian process surrogate is more complex. At first, you have to specify the
bounds of the suggestions. Additionally, you can set the transformation of the search space. In combination with the
bounds, this can be used for a rescaling of the kernel or for optimization of discrete values:

from sklearn.gaussian_process.kernels import Matern
from torch.optim import SGD

from deepobs import config
from deepobs.pytorch.runners import StandardRunner
from deepobs.tuner import GP

optimizer_class = SGD
hyperparams = {
 "lr": {"type": float},
 "momentum": {"type": float},
 "nesterov": {"type": bool},
}

The bounds for the suggestions
bounds = {"lr": (-5, 2), "momentum": (0.5, 1), "nesterov": (0, 1)}

Corresponds to rescaling the kernel in log space.
def lr_transform(lr):
 return 10 ** lr

Nesterov is discrete but will be suggested continious.
def nesterov_transform(nesterov):
 return bool(round(nesterov))

The transformations of the search space. Momentum does not need a transformation.
transformations = {"lr": lr_transform, "nesterov": nesterov_transform}

tuner = GP(
 optimizer_class,
 hyperparams,
 bounds,
 runner=StandardRunner,
 ressources=36,
 transformations=transformations,
)

Tune with a Matern kernel and rerun the best setting with 10 different seeds.
tuner.tune(
 "quadratic_deep",
 kernel=Matern(nu=2.5),
 rerun_best_setting=True,
 num_epochs=2,
 output_dir="./gp_tuner",
)

You can download this example and use it as a template. Since Bayesian optimization is sequential by nature, we do not
offer a parallelized version of it.

Analyzer

DeepOBS uses the analyzer module to get meaning full outputs from the results
created by the runners. This includes:

	Getting the best settings (e.g. best learning rate) for an optimizer on a specific test problem.

	Plotting the hyperparameter (e.g. learning_rate) sensitivity for multiple optimizers on a test problem.

	Plotting all performance metrics of the whole benchmark set.

	Returning the overall performance table for multiple optimizers.

The analyzer can return those outputs as matplotlib plots for customization.

Analyzer

	Validate Output

	Plot Optimizer Performances

	Get the Best Runs

	Plot Hyperparameter Sensitivity

	Estimate Runtime

Validate Output

	
deepobs.analyzer.check_output(results_path)

	Iterates through the results folder an checks all outputs for format and completeness. It checks for some basic
format in every json file and looks for setting folders which are empty.
It further gives an overview over the amount of different settings and seed runs for
each test problem and each optimizer. It does not return anything, but it prints an overview to the console.

	Parameters

	results_path (str) -- Path to the results folder.

Plot Optimizer Performances

	
deepobs.analyzer.plot_optimizer_performance(path, fig=None, ax=None, mode='most', metric='valid_accuracies', reference_path=None, show=True, which='mean_and_std')

	Plots the training curve of optimizers and addionally plots reference results from the reference_path

	Parameters

	
	path (str) -- Path to the optimizer or to a whole testproblem (in this case all optimizers in the testproblem folder are plotted).

	fig (matplotlib.Figure) -- Figure to plot the training curves in.

	ax (matplotlib.axes.Axes) -- The axes to plot the trainig curves for all metrices. Must have 4 subaxes (one for each metric).

	mode (str) -- The mode by which to decide the best setting.

	metric (str) -- The metric by which to decide the best setting.

	reference_path (str) -- Path to the reference optimizer or to a whole testproblem (in this case all optimizers in the testproblem folder are taken as reference).

	show (bool) -- Whether to show the plot or not.

	which (str) -- ['mean_and_std', 'median_and_quartiles'] Solid plot mean or median, shaded plots standard deviation or lower/upper quartiles.

	Returns

	The figure and axes with the plots.

	Return type

	tuple

	
deepobs.analyzer.plot_testset_performances(results_path, mode='most', metric='valid_accuracies', reference_path=None, show=True, which='mean_and_std')

	Plots all optimizer performances for all testproblems.

	Parameters

	
	results_path (str) -- The path to the results folder.

	mode (str) -- The mode by which to decide the best setting.

	metric (str) -- The metric by which to decide the best setting.

	reference_path (str) -- Path to the reference results folder. For each available reference testproblem, all optimizers are plotted as reference.

	show (bool) -- Whether to show the plot or not.

	which (str) -- ['mean_and_std', 'median_and_quartiles'] Solid plot mean or median, shaded plots standard deviation or lower/upper quartiles.

	Returns

	The figure and axes.

	Return type

	tuple

Get the Best Runs

	
deepobs.analyzer.plot_results_table(results_path, mode='most', metric='valid_accuracies', conv_perf_file=None)

	Summarizes the performance of the optimizer and prints it to a pandas data frame.

	Parameters

	
	results_path (str) -- The path to the results directory.

	mode (str) -- The mode by which to decide the best setting.

	metric (str) -- The metric by which to decide the best setting.

	conv_perf_file (str) -- Path to the convergence performance file. It is used to calculate the speed of the optimizer. Defaults to None in which case the speed measure is N.A.

	Returns

	A data frame that summarizes the results on the test set.

	Return type

	pandas.DataFrame

	
deepobs.analyzer.get_performance_dictionary(optimizer_path, mode='most', metric='valid_accuracies', conv_perf_file=None)

	Summarizes the performance of the optimizer.

	Parameters

	
	optimizer_path (str) -- The path to the optimizer to analyse.

	mode (str) -- The mode by which to decide the best setting.

	metric (str) -- The metric by which to decide the best setting.

	conv_perf_file (str) -- Path to the convergence performance file. It is used to calculate the speed of the optimizer. Defaults to None in which case the speed measure is N.A.

	Returns

	A dictionary that holds the best setting and it's performance on the test set.

	Return type

	dict

Plot Hyperparameter Sensitivity

	
deepobs.analyzer.plot_hyperparameter_sensitivity(path, hyperparam, mode='final', metric='valid_accuracies', xscale='linear', plot_std=True, reference_path=None, show=True, ax=None)

	Plots the hyperparameter sensitivtiy of the optimizer.

	Parameters

	
	path (str) -- The path to the optimizer to analyse. Or to a whole testproblem. In that case, all optimizer sensitivities are plotted.

	hyperparam (str) -- The name of the hyperparameter that should be analyzed.

	mode (str) -- The mode by which to decide the best setting.

	metric (str) -- The metric by which to decide the best setting.

	xscale (str) -- The scale for the parameter axes. Is passed to plt.xscale().

	plot_std (bool) -- Whether to plot markers for individual seed runs or not. If False, only the mean is plotted.

	reference_path (str) -- Path to the reference optimizer or to a whole testproblem (in this case all optimizers in the testproblem folder are taken as reference).

	show (bool) -- Whether to show the plot or not.

	ax (matplotlib.axis) -- Axis to draw onto. Defaults to none, which creates a new one.

	Returns

	The figure and axes of the plot.

	Return type

	tuple

Estimate Runtime

	
deepobs.analyzer.estimate_runtime(framework, runner_cls, optimizer_cls, optimizer_hp, optimizer_hyperparams, n_runs=5, sgd_lr=0.01, testproblem='mnist_mlp', num_epochs=5, batch_size=128, **kwargs)

	Can be used to estimates the runtime overhead of a new optimizer compared to SGD. Runs the new optimizer and
SGD seperately and calculates the fraction of wall clock overhead.

	Parameters

	
	framework (str) -- Framework that you use. Must be 'pytorch' or 'tensorlfow'.

	runner_cls -- The runner class that your optimizer uses.

	optimizer_cls -- Your optimizer class.

	optimizer_hp (dict) -- Its hyperparameter specification as it is used in the runner initialization.

	optimizer_hyperparams (dict) -- Optimizer hyperparameter values to run.

	n_runs (int) -- The number of run calls for which the overhead is averaged over.

	sgd_lr (float) -- The vanilla SGD learning rate to use.

	testproblem (str) -- The deepobs testproblem to run SGD and the new optimizer on.

	num_epochs (int) -- The number of epochs to run for the testproblem.

	batch_size (int) -- Batch size of the testproblem.

	Returns

	The output that is printed to the console.

	Return type

	str

TensorFlow

TensorFlow

	Data Sets
	2D Data Set

	Quadratic Data Set

	MNIST Data Set

	FMNIST Data Set

	CIFAR-10 Data Set

	CIFAR-100 Data Set

	SVHN Data Set

	ImageNet Data Set

	Tolstoi Data Set

	Test Problems
	2D Test Problems

	Quadratic Test Problems

	MNIST Test Problems

	Fashion-MNIST Test Problems

	CIFAR-10 Test Problems

	CIFAR-100 Test Problems

	SVHN Test Problems

	ImageNet Test Problems

	Tolstoi Test Problems

	Runner
	TF Runner

	Standard Runner

	Learning Rate Schedule Runner

	Config

Data Sets

Currently DeepOBS includes nine different data sets. Each data set inherits from
the same base class with the following signature.

	
class deepobs.tensorflow.datasets.dataset.DataSet(batch_size)

	Base class for DeepOBS data sets.

	Parameters

	batch_size (int) -- The mini-batch size to use.

	
batch

	A tuple of tensors, yielding batches of data from the dataset.
Executing these tensors raises a tf.errors.OutOfRangeError after one
epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
valid_init_op

	A tensorflow operation initializing the dataset for the
validation phase.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval, valid,
or test, depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

After selecting a data set (i.e. CIFAR-10, Fahion-MNIST, etc.) we define four internal TensorFlow data sets (i.e. train, train_eval, valid and test).
Those are splits of the original data set that are used for training, hyperparameter tuning and performance evaluation.
These internal data sets (also called DeepOBS data sets) are created as shown in the illustration below.

[image: ../../_images/DeepOBS_Data_Sets1.png]

Data Sets

	2D Data Set

	Quadratic Data Set

	MNIST Data Set

	FMNIST Data Set

	CIFAR-10 Data Set

	CIFAR-100 Data Set

	SVHN Data Set

	ImageNet Data Set

	Tolstoi Data Set

2D Data Set

	
class deepobs.tensorflow.datasets.two_d.two_d(batch_size, train_size=10000, noise_level=1.0)

	DeepOBS data set class to create two dimensional stochastic testproblems.

This toy data set consists of a fixed number (train_size) of iid draws
from two scalar zero-mean normal distributions with standard deviation
specified by the noise_level.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (1000 for train and test) the
remainder is dropped in each epoch (after shuffling).

	train_size (int) -- Size of the training data set. This will also be used as
the train_eval and test set size. Defaults to 10000.

	noise_level (float) -- Standard deviation of the data points around the mean.
The data points are drawn from a Gaussian distribution. Defaults to
1.0.

	
batch

	A tuple (x, y) of tensors with random x and y that can be used to
create a noisy two dimensional testproblem. Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to "train", "train_eval" or
"test", depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

Quadratic Data Set

	
class deepobs.tensorflow.datasets.quadratic.quadratic(batch_size, dim=100, train_size=1000, noise_level=0.6)

	DeepOBS data set class to create an n dimensional stochastic quadratic testproblem.

This toy data set consists of a fixed number (train_size) of iid draws
from a zero-mean normal distribution in dim dimensions with isotropic
covariance specified by noise_level.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (1000 for train and test) the
remainder is dropped in each epoch (after shuffling).

	dim (int) -- Dimensionality of the quadratic. Defaults to 100.

	train_size (int) -- Size of the dataset; will be used for train, train eval and
test datasets. Defaults to 1000.

	noise_level (float) -- Standard deviation of the data points around the mean.
The data points are drawn from a Gaussian distribution.
Defaults to 0.6.

	
batch

	A tensor X of shape (batch_size, dim) yielding elements from
the dataset. Executing these tensors raises a tf.errors.OutOfRangeError
after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

MNIST Data Set

	
class deepobs.tensorflow.datasets.mnist.mnist(batch_size, train_eval_size=10000)

	DeepOBS data set class for the MNIST [http://yann.lecun.com/exdb/mnist/] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (60 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of MNIST images
(x with shape (batch_size, 28, 28, 1)) and corresponding one-hot
label vectors (y with shape (batch_size, 10)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
valid_init_op

	A tensorflow operation initializing the testproblem for
evaluating on validation data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval,
valid, or test, depending on the current phase. This can be used
by testproblems to adapt their behavior to this phase.

FMNIST Data Set

	
class deepobs.tensorflow.datasets.fmnist.fmnist(batch_size, train_eval_size=10000)

	DeepOBS data set class for the Fashion-MNIST (FMNIST) [https://github.com/zalandoresearch/fashion-mnist] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (60 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of MNIST images
(x with shape (batch_size, 28, 28, 1)) and corresponding one-hot
label vectors (y with shape (batch_size, 10)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
valid_init_op

	A tensorflow operation initializing the testproblem for
evaluating on validation data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval,
valid, or test, depending on the current phase. This can be used
by testproblems to adapt their behavior to this phase.

CIFAR-10 Data Set

	
class deepobs.tensorflow.datasets.cifar10.cifar10(batch_size, data_augmentation=True, train_eval_size=10000)

	DeepOBS data set class for the CIFAR-10 [https://www.cs.toronto.edu/~kriz/cifar.html] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (50 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, horizontal flipping, lighting augmentation) are
applied to the training data (but not the test data).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of CIFAR-10 images
(x with shape (batch_size, 32, 32, 3)) and corresponding one-hot
label vectors (y with shape (batch_size, 10)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
valid_init_op

	A tensorflow operation initializing the testproblem for
evaluating on validation data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval,
valid, or test, depending on the current phase. This can be used
by testproblems to adapt their behavior to this phase.

CIFAR-100 Data Set

	
class deepobs.tensorflow.datasets.cifar100.cifar100(batch_size, data_augmentation=True, train_eval_size=10000)

	DeepOBS data set class for the CIFAR-100 [https://www.cs.toronto.edu/~kriz/cifar.html] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (50 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, horizontal flipping, lighting augmentation) are
applied to the training data (but not the test data).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of CIFAR-100 images
(x with shape (batch_size, 32, 32, 3)) and corresponding one-hot
label vectors (y with shape (batch_size, 100)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
valid_init_op

	A tensorflow operation initializing the testproblem for
evaluating on validation data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval,
valid, or test, depending on the current phase. This can be used
by testproblems to adapt their behavior to this phase.

SVHN Data Set

	
class deepobs.tensorflow.datasets.svhn.svhn(batch_size, data_augmentation=True, train_eval_size=26032)

	DeepOBS data set class for the Street View House Numbers (SVHN) [http://ufldl.stanford.edu/housenumbers/] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (73 000 for train, 26 000
for test) the remainder is dropped in each epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, lighting augmentation) are applied to the
training data (but not the test data).

	train_eval_size (int) -- Size of the train eval dataset.
Defaults to 26 000 the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of SVHN images
(x with shape (batch_size, 32, 32, 3)) and corresponding one-hot
label vectors (y with shape (batch_size, 10)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
valid_init_op

	A tensorflow operation initializing the testproblem for
evaluating on validation data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval,
valid, or test, depending on the current phase. This can be used
by testproblems to adapt their behavior to this phase.

ImageNet Data Set

	
class deepobs.tensorflow.datasets.imagenet.imagenet(batch_size, data_augmentation=True, train_eval_size=50000)

	DeepOBS data set class for the ImageNet [http://www.image-net.org/] data set.

Note

We use 1001 classes which includes an additional background class,
as it is used for example by the inception net.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size the remainder is dropped in each
epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, horizontal flipping, lighting augmentation) are
applied to the training data (but not the test data).

	train_eval_size (int) -- Size of the train eval dataset.
Defaults to 10 000.

	
batch

	A tuple (x, y) of tensors, yielding batches of ImageNet images
(x with shape (batch_size, 224, 224, 3)) and corresponding one-hot
label vectors (y with shape (batch_size, 1001)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
valid_init_op

	A tensorflow operation initializing the testproblem for
evaluating on validation data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval,
valid, or test, depending on the current phase. This can be used
by testproblems to adapt their behavior to this phase.

Tolstoi Data Set

	
class deepobs.tensorflow.datasets.tolstoi.tolstoi(batch_size, seq_length=50, train_eval_size=653237)

	DeepOBS data set class for character prediction on War and Peace by Leo Tolstoi.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size the remainder is dropped in each
epoch (after shuffling).

	seq_length (int) -- Sequence length to be modeled in each step.
Defaults to 50.

	train_eval_size (int) -- Size of the train eval dataset.
Defaults to 653 237, the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of tolstoi data
(x with shape (batch_size, seq_length)) and (y with shape
(batch_size, seq_length) which is x shifted by one).
Executing these tensors raises a tf.errors.OutOfRangeError after one
epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by
testproblems to adapt their behavior to this phase.

Test Problems

Currently DeepOBS includes twenty-six different test problems. A test problem is
given by a combination of a data set and a model and is characterized by its
loss function.

Each test problem inherits from the same base class with the following signature.

	
class deepobs.tensorflow.testproblems.testproblem.TestProblem(batch_size, l2_reg=None)

	Base class for DeepOBS test problems.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-Regularization (weight decay) factor to use. If
not specified, the test problems revert to their respective defaults.
Note: Some test problems do not use regularization and this value will
be ignored in such a case.

	
dataset

	The dataset used by the test problem (datasets.DataSet instance).

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term (might be
a constant 0.0 for test problems that do not use regularization).

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Sets up the test problem.

This includes setting up the data loading pipeline for the data set and
creating the tensorflow computation graph for this test problem
(e.g. creating the neural network).

Note

Some of the test problems described here are based on more general implementations.
For example the Wide ResNet 40-4 network on Cifar-100 is based on the general
Wide ResNet architecture which is also implemented. Therefore, it is very easy
to include new Wide ResNets if necessary.

Test Problems

	2D Test Problems
	2D Beale

	2D Branin

	2D Rosenbrock

	Quadratic Test Problems
	Quadratic Deep

	MNIST Test Problems
	MNIST LogReg

	MNIST MLP

	MNIST 2c2d

	MNIST VAE

	Fashion-MNIST Test Problems
	Fashion-MNIST LogReg

	Fashion-MNIST MLP

	Fashion-MNIST 2c2d

	Fashion-MNIST VAE

	CIFAR-10 Test Problems
	CIFAR-10 3c3d

	CIFAR-10 VGG16

	CIFAR-10 VGG19

	CIFAR-100 Test Problems
	CIFAR-100 3c3d

	CIFAR-100 VGG16

	CIFAR-100 VGG19

	CIFAR-100 All-CNN-C

	CIFAR-100 WideResNet 40-4

	SVHN Test Problems
	SVHN 3c3d

	SVHN WideResNet 16-4

	ImageNet Test Problems
	ImageNet VGG16

	ImageNet VGG19

	ImageNet Inception v3

	Tolstoi Test Problems
	Tolstoi Char RNN

2D Test Problems

Three two-dimensional test problems are included in DeepOBS. They are mainly
included for illustrative purposes as these explicit loss functions can be
plotted.

They are all stochastic variants of classical deterministic optimization test
functions.

Test Problems

	2D Beale

	2D Branin

	2D Rosenbrock

2D Beale

	
class deepobs.tensorflow.testproblems.two_d_beale.two_d_beale(batch_size, l2_reg=None)

	DeepOBS test problem class for a stochastic version of thetwo-dimensional Beale function as the loss function.

Using the deterministic Beale function [https://www.sfu.ca/~ssurjano/beale.html] and adding stochastic noise of
the form

\(u \cdot x + v \cdot y\)

where x and y are normally distributed with mean 0.0 and
standard deviation 1.0 we get a loss function of the form

\(((1.5 - u + u \cdot v)^2 + (2.25 - u + u \cdot v ^ 2) ^ 2 + (2.625 -\
u + u \cdot v ^ 3) ^ 2) + u \cdot x + v \cdot y\).

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for the two_d stochastic test problem.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Sets up the stochastic two-dimensional Beale test problem.
Using -4.5 and 4.5 as a starting point for the weights u
and v.

2D Branin

	
class deepobs.tensorflow.testproblems.two_d_branin.two_d_branin(batch_size, l2_reg=None)

	DeepOBS test problem class for a stochastic version of thetwo-dimensional Branin function as the loss function.

Using the deterministic Branin function [https://www.sfu.ca/~ssurjano/branin.html] and adding stochastic noise of
the form

\(u \cdot x + v \cdot y\)

where x and y are normally distributed with mean 0.0 and
standard deviation 1.0 we get a loss function of the form

\((v - 5.1/(4 \cdot \pi^2) u^2 + 5/ \pi u - 6)^2 +\
10 \cdot (1-1/(8 \cdot \pi)) \cdot \cos(u) + 10 + u \cdot x + v \cdot y\).

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for the two_d stochastic test problem.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Sets up the stochastic two-dimensional Branin test problem.
Using 2.5 and 12.5 as a starting point for the weights u
and v.

2D Rosenbrock

	
class deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock(batch_size, l2_reg=None)

	DeepOBS test problem class for a stochastic version of thetwo-dimensional Rosenbrock function as the loss function.

Using the deterministic Rosenbrock function [https://en.wikipedia.org/wiki/Rosenbrock_function] and adding stochastic
noise of the form

\(u \cdot x + v \cdot y\)

where x and y are normally distributed with mean 0.0 and
standard deviation 1.0 we get a loss function of the form

\((1 - u)^2 + 100 \cdot (v - u^2)^2 + u \cdot x + v \cdot y\)

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for the two_d stochastic test problem.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Sets up the stochastic two-dimensional Rosenbrock test problem.
Using -0.5 and 1.5 as a starting point for the weights u
and v.

Quadratic Test Problems

DeepOBS includes a stochastic quadratic problem with an eigenspectrum similar to
what has been reported for neural networks.

Other stochastic quadratic problems (of different dimensionality or with a
different Hessian structure) can be created easily using the quadratic_base
class.

	
class deepobs.tensorflow.testproblems._quadratic._quadratic_base(batch_size, l2_reg=None, hessian=array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]]))

	DeepOBS base class for a stochastic quadratic test problems creating lossfunctions of the form

\(0.5* (\theta - x)^T * Q * (\theta - x)\)

with Hessian Q and "data" x coming from the quadratic data set, i.e.,
zero-mean normal.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	hessian (np.array) -- Hessian of the quadratic problem.
Defaults to the 100 dimensional identity.

	
dataset

	The DeepOBS data set class for the quadratic test problem.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Sets up the stochastic quadratic test problem. The parameter Theta
will be initialized to (a vector of) 1.0.

Test Problems

	Quadratic Deep

Quadratic Deep

	
class deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep(batch_size, l2_reg=None)

	DeepOBS test problem class for a stochastic quadratic test problem 100dimensions. The 90 % of the eigenvalues of the Hessian are drawn from theinterval \((0.0, 1.0)\) and the other 10 % are from \((30.0, 60.0)\) simulating an eigenspectrum which has been reported for Deep Learning https://arxiv.org/abs/1611.01838.

This creatis a loss functions of the form

\(0.5* (\theta - x)^T * Q * (\theta - x)\)

with Hessian Q and "data" x coming from the quadratic data set, i.e.,
zero-mean normal.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for the quadratic test problem.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

MNIST Test Problems

Test Problems

	MNIST LogReg

	MNIST MLP

	MNIST 2c2d

	MNIST VAE

MNIST LogReg

	
class deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg(batch_size, l2_reg=None)

	DeepOBS test problem class for multinomial logistic regression on MNIST.

No regularization is used and the weights and biases are initialized to 0.0.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Sets up the logistic regression test problem on MNIST.

MNIST MLP

	
class deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp(batch_size, l2_reg=None)

	DeepOBS test problem class for a multi-layer perceptron neural network on MNIST.

The network is build as follows:

	Four fully-connected layers with 1000, 500, 100 and 10
units per layer.

	The first three layers use ReLU activation, and the last one a softmax
activation.

	The biases are initialized to 0.0 and the weight matrices with
truncated normal (standard deviation of 3e-2)

	The model uses a cross entropy loss.

	No regularization is used.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the multi-layer perceptron test problem instance on MNIST.

MNIST 2c2d

	
class deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d(batch_size, l2_reg=None)

	DeepOBS test problem class for a two convolutional and two dense layered neural network on MNIST.

The network has been adapted from the TensorFlow tutorial [https://www.tensorflow.org/tutorials/estimators/cnn] and consists of

	two conv layers with ReLUs, each followed by max-pooling

	one fully-connected layers with ReLUs

	10-unit output layer with softmax

	cross-entropy loss

	No regularization

The weight matrices are initialized with truncated normal (standard deviation
of 0.05) and the biases are initialized to 0.05.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Sets up the vanilla CNN test problem on MNIST.

MNIST VAE

	
class deepobs.tensorflow.testproblems.mnist_vae.mnist_vae(batch_size, l2_reg=None)

	DeepOBS test problem class for a variational autoencoder (VAE) on MNIST.

The network has been adapted from the here [https://towardsdatascience.com/teaching-a-variational-autoencoder-vae-to-draw-mnist-characters-978675c95776]
and consists of an encoder:

	With three convolutional layers with each 64 filters.

	Using a leaky ReLU activation function with \(\alpha = 0.3\)

	Dropout layers after each convolutional layer with a rate of 0.2.

and an decoder:

	With two dense layers with 24 and 49 units and leaky ReLU activation.

	With three deconvolutional layers with each 64 filters.

	Dropout layers after the first two deconvolutional layer with a rate of 0.2.

	A final dense layer with 28 x 28 units and sigmoid activation.

No regularization is used.

	Parameters

	
	batch_size (type) -- Batch size to use.

	l2_reg (type) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Sets up the VAE test problem on MNIST.

Fashion-MNIST Test Problems

Test Problems

	Fashion-MNIST LogReg

	Fashion-MNIST MLP

	Fashion-MNIST 2c2d

	Fashion-MNIST VAE

Fashion-MNIST LogReg

	
class deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg(batch_size, l2_reg=None)

	DeepOBS test problem class for multinomial logistic regression on Fasion-MNIST.

No regularization is used and the weights and biases are initialized to 0.0.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for Fashion-MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the logistic regression test problem on Fashion-MNIST.

Fashion-MNIST MLP

	
class deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp(batch_size, l2_reg=None)

	DeepOBS test problem class for a multi-layer perceptron neural network on Fashion-MNIST.

The network is build as follows:

	Four fully-connected layers with 1000, 500, 100 and 10
units per layer.

	The first three layers use ReLU activation, and the last one a softmax
activation.

	The biases are initialized to 0.0 and the weight matrices with
truncated normal (standard deviation of 3e-2)

	The model uses a cross entropy loss.

	No regularization is used.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for Fashion-MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the multi-layer perceptron test problem instance on
Fashion-MNIST.

Fashion-MNIST 2c2d

	
class deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d(batch_size, l2_reg=None)

	DeepOBS test problem class for a two convolutional and two dense layered neural network on Fashion-MNIST.

The network has been adapted from the TensorFlow tutorial [https://www.tensorflow.org/tutorials/estimators/cnn] and consists of

	two conv layers with ReLUs, each followed by max-pooling

	one fully-connected layers with ReLUs

	10-unit output layer with softmax

	cross-entropy loss

	No regularization

The weight matrices are initialized with truncated normal (standard deviation
of 0.05) and the biases are initialized to 0.05.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for Fashion-MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the vanilla CNN test problem on Fashion-MNIST.

Fashion-MNIST VAE

	
class deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae(batch_size, l2_reg=None)

	DeepOBS test problem class for a variational autoencoder (VAE) on Fashion-MNIST.

The network has been adapted from the here [https://towardsdatascience.com/teaching-a-variational-autoencoder-vae-to-draw-mnist-characters-978675c95776]
and consists of an encoder:

	With three convolutional layers with each 64 filters.

	Using a leaky ReLU activation function with \(\alpha = 0.3\)

	Dropout layers after each convolutional layer with a rate of 0.2.

and an decoder:

	With two dense layers with 24 and 49 units and leaky ReLU activation.

	With three deconvolutional layers with each 64 filters.

	Dropout layers after the first two deconvolutional layer with a rate of 0.2.

	A final dense layer with 28 x 28 units and sigmoid activation.

No regularization is used.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for Fashion-MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Set up the VAE test problem on MNIST.

CIFAR-10 Test Problems

Test Problems

	CIFAR-10 3c3d

	CIFAR-10 VGG16

	CIFAR-10 VGG19

CIFAR-10 3c3d

	
class deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d(batch_size, l2_reg=0.002)

	DeepOBS test problem class for a three convolutional and three dense layered neural network on Cifar-10.

The network consists of

	three conv layers with ReLUs, each followed by max-pooling

	two fully-connected layers with 512 and 256 units and ReLU activation

	10-unit output layer with softmax

	cross-entropy loss

	L2 regularization on the weights (but not the biases) with a default
factor of 0.002

The weight matrices are initialized using Xavier initialization and the biases
are initialized to 0.0.

A working training setting is batch size = 128, num_epochs = 100 and
SGD with learning rate of 0.01.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases. Defaults to 0.002.

	
dataset

	The DeepOBS data set class for Cifar-10.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the vanilla CNN test problem on Cifar-10.

CIFAR-10 VGG16

	
class deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the VGG 16 network on Cifar-10.

The CIFAR-10 images are resized to 224 by 224 to fit the input
dimension of the original VGG network, which was designed for ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 16 consists of 16 weight layers, of mostly convolutions. The model uses
cross-entroy loss. L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-10.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 16 test problem on Cifar-10.

CIFAR-10 VGG19

	
class deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the VGG 19 network on Cifar-10.

The CIFAR-10 images are resized to 224 by 224 to fit the input
dimension of the original VGG network, which was designed for ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 19 consists of 19 weight layers, of mostly convolutions. The model uses
cross-entroy loss. L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-10.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 19 test problem on Cifar-10.

CIFAR-100 Test Problems

Test Problems

	CIFAR-100 3c3d

	CIFAR-100 VGG16

	CIFAR-100 VGG19

	CIFAR-100 All-CNN-C

	CIFAR-100 WideResNet 40-4

CIFAR-100 3c3d

	
class deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d(batch_size, l2_reg=0.002)

	DeepOBS test problem class for a three convolutional and three dense layered neural network on Cifar-100.

The network consists of

	three conv layers with ReLUs, each followed by max-pooling

	two fully-connected layers with 512 and 256 units and ReLU activation

	100-unit output layer with softmax

	cross-entropy loss

	L2 regularization on the weights (but not the biases) with a default
factor of 0.002

The weight matrices are initialized using Xavier initialization and the biases
are initialized to 0.0.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases. Defaults to 0.002.

	
dataset

	The DeepOBS data set class for Cifar-100.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the vanilla CNN test problem on Cifar-100.

CIFAR-100 VGG16

	
class deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the VGG 16 network on Cifar-100.

The CIFAR-100 images are resized to 224 by 224 to fit the input
dimension of the original VGG network, which was designed for ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 16 consists of 16 weight layers, of mostly convolutions. The model uses
cross-entroy loss. L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-100.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 16 test problem on Cifar-100.

CIFAR-100 VGG19

	
class deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the VGG 19 network on Cifar-100.

The CIFAR-100 images are resized to 224 by 224 to fit the input
dimension of the original VGG network, which was designed for ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 19 consists of 19 weight layers, of mostly convolutions. The model uses
cross-entroy loss. L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-100.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 19 test problem on Cifar-100.

CIFAR-100 All-CNN-C

	
class deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the All Convolutional Neural Network C
on Cifar-100.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1412.6806].

The paper does not comment on initialization; here we use Xavier for conv
filters and constant 0.1 for biases.

L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

The reference training parameters from the paper are batch size = 256,
num_epochs = 350 using the Momentum optimizer with \(\mu = 0.9\) and
an initial learning rate of \(\alpha = 0.05\) and decrease by a factor of
10 after 200, 250 and 300 epochs.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-100.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the All CNN C test problem on Cifar-100.

CIFAR-100 WideResNet 40-4

	
class deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the Wide Residual Network 40-4 architecture for CIFAR-100.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1605.07146].
L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

Training settings recommended in the original paper [https://arxiv.org/abs/1605.07146]:
batch size = 128, num_epochs = 200 using the Momentum optimizer
with \(\mu = 0.9\) and an initial learning rate of 0.1 with a decrease by
0.2 after 60, 120 and 160 epochs.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-100.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the Wide ResNet 40-4 test problem on Cifar-100.

SVHN Test Problems

Test Problems

	SVHN 3c3d

	SVHN WideResNet 16-4

SVHN 3c3d

	
class deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d(batch_size, l2_reg=0.002)

	DeepOBS test problem class for a three convolutional and three dense layered neural network on SVHN.

The network consists of

	three conv layers with ReLUs, each followed by max-pooling

	two fully-connected layers with 512 and 256 units and ReLU activation

	10-unit output layer with softmax

	cross-entropy loss

	L2 regularization on the weights (but not the biases) with a default
factor of 0.002

The weight matrices are initialized using Xavier initialization and the biases
are initialized to 0.0.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases. Defaults to 0.002.

	
dataset

	The DeepOBS data set class for SVHN.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the vanilla CNN test problem on SVHN.

SVHN WideResNet 16-4

	
class deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the Wide Residual Network 16-4 architecture for SVHN.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1605.07146].
L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

Training settings recommended in the original paper [https://arxiv.org/abs/1605.07146]:
batch size = 128, num_epochs = 160 using the Momentum optimizer
with \(\mu = 0.9\) and an initial learning rate of 0.01 with a decrease by
0.1 after 80 and 120 epochs.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for SVHN.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the Wide ResNet 16-4 test problem on SVHN.

ImageNet Test Problems

Test Problems

	ImageNet VGG16

	ImageNet VGG19

	ImageNet Inception v3

ImageNet VGG16

	
class deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the VGG 16 network on ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 16 consists of 16 weight layers, of mostly convolutions. The model uses
cross-entroy loss. L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for ImageNet.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 16 test problem on ImageNet.

ImageNet VGG19

	
class deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the VGG 19 network on ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 19 consists of 19 weight layers, of mostly convolutions. The model uses
cross-entroy loss. L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for ImageNet.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 19 test problem on ImageNet.

ImageNet Inception v3

	
class deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the Inception version 3 architecture on
ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1512.00567].

There are many changes from the paper to the official Tensorflow implementation [https://github.com/tensorflow/models/blob/master/research/inception/inception/slim/inception_model.py]
as well as the model.txt that can be found in the sources of the original
paper. We chose to implement the version from Tensorflow (with possibly some
minor changes)

In the original paper [https://arxiv.org/abs/1512.00567] they trained the network using:

	100 Epochs.

	Batch size 32.

	RMSProp with a decay of 0.9 and \(\epsilon = 1.0\).

	Initial learning rate 0.045.

	Learning rate decay every two epochs with exponential rate of 0.94.

	Gradient clipping with threshold 2.0

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for ImageNet.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the Inception v3 test problem on ImageNet.

Tolstoi Test Problems

Test Problems

	Tolstoi Char RNN

Tolstoi Char RNN

	
class deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn(batch_size, l2_reg=None)

	DeepOBS test problem class for a two-layer LSTM for character-level language
modelling (Char RNN) on Tolstoi's War and Peace.

Some network characteristics:

	128 hidden units per LSTM cell

	sequence length 50

	cell state is automatically stored in variables between subsequent steps

	when the phase placeholder swithches its value from one step to the next,
the cell state is set to its zero value (meaning that we set to zero state
after each round of evaluation, it is therefore important to set the
evaluation interval such that we evaluate after a full epoch.)

Working training parameters are:

	batch size 50

	200 epochs

	SGD with a learning rate of \(\approx 0.1\) works

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for Tolstoi.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the Char RNN test problem instance on Tolstoi.

Runner

Runner take care of the actual training process in DeepOBS. They also log
performance statistics such as the loss and accuracy on the test and training
data set.

The output of those runners is saved into JSON files and optionally also
TensorFlow output files that can be plotted in real-time using Tensorboard.

Runner

	TF Runner

	Standard Runner

	Learning Rate Schedule Runner

TF Runner

The base class for all TensorFlow Runner.

	
class deepobs.tensorflow.runners.TFRunner(optimizer_class, hyperparameter_names)

	Bases: deepobs.abstract_runner.abstract_runner.Runner

	
__init__(optimizer_class, hyperparameter_names)

	Creates a new Runner instance

	Parameters

	
	optimizer_class -- The optimizer class of the optimizer that is run on the testproblems. For PyTorch this must be a subclass of torch.optim.Optimizer. For TensorFlow a subclass of tf.train.Optimizer.

	hyperparameter_names -- A nested dictionary that lists all hyperparameters of the optimizer, their type and their default values (if they have any).

Example

>>> optimizer_class = tf.train.MomentumOptimizer
>>> hyperparms = {'lr': {'type': float},
>>> 'momentum': {'type': float, 'default': 0.99},
>>> 'uses_nesterov': {'type': bool, 'default': False}}
>>> runner = StandardRunner(optimizer_class, hyperparms)

	
static create_testproblem(testproblem, batch_size, l2_reg, random_seed)

	Sets up the deepobs.tensorflow.testproblems.testproblem instance.

	Parameters

	
	testproblem (str) -- The name of the testproblem.

	batch_size (int) -- Batch size that is used for training

	l2_reg (float) -- Regularization factor

	random_seed (int) -- The random seed of the framework

	Returns

	An instance of deepobs.pytorch.testproblems.testproblem

	Return type

	deepobs.tensorflow.testproblems.testproblem

	
static evaluate(tproblem, sess, loss, phase)

	Computes average loss and accuracy in the evaluation phase.
:param tproblem: The testproblem instance.
:type tproblem: deepobs.tensorflow.testproblems.testproblem
:param sess: The current TensorFlow Session.
:type sess: tensorflow.Session
:param loss: The TensorFlow operation that computes the loss.
:param phase: The phase of the evaluation. Muste be one of 'TRAIN', 'VALID' or 'TEST'
:type phase: str

	
static init_summary(loss, learning_rate_var, batch_size, tb_log_dir)

	Initializes the tensorboard summaries

	
parse_args(testproblem, hyperparams, batch_size, num_epochs, random_seed, data_dir, output_dir, l2_reg, no_logs, train_log_interval, print_train_iter, tb_log, tb_log_dir, training_params)

	Constructs an argparse.ArgumentParser and parses the arguments from command line.

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	training_params (dict) -- Kwargs for the training method.

	Returns

	A dicionary of all arguments.

	Return type

	dict

	
run(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, skip_if_exists=False, **training_params)

	
	Runs a testproblem with the optimizer_class. Has the following tasks:

	
	setup testproblem

	run the training (must be implemented by subclass)

	merge and write output

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	skip_if_exists (bool) -- Skip training if the output already exists.

	training_params (dict) -- Kwargs for the training method.

	Returns

	{<...meta data...>, 'test_losses' : test_losses, 'valid_losses': valid_losses 'train_losses': train_losses, 'test_accuracies': test_accuracies, 'valid_accuracies': valid_accuracies 'train_accuracies': train_accuracies, } where <...meta data...> stores the run args.

	Return type

	dict

	
run_exists(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, **training_params)

	Return whether output file for this run already exists.

	Parameters

	run method. (See) --

	Returns

	The first parameter is True if the .json output file already exists, else False. The list contains the paths to the files that match the run.

	Return type

	bool, list(str)

	
training(tproblem, hyperparams, num_epochs, print_train_iter, train_log_interval, tb_log, tb_log_dir, **training_params)

	Performs the training and stores the metrices.

	Parameters

	
	tproblem (deepobs.[tensorflow/pytorch]testproblems.testproblem) -- The testproblem instance to train on.

	hyperparams (dict) -- The optimizer hyperparameters to use for the training.

	num_epochs (int) -- The number of training epochs.

	print_train_iter (bool) -- Whether to print the training progress at every train_log_interval

	train_log_interval (int) -- Mini-batch interval for logging.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	**training_params (dict) -- Kwargs for additional training parameters that are implemented by subclass.

	Returns

	The logged metrices. Is of the form: {'test_losses' : [...], 'valid_losses': [...], 'train_losses': [...], 'test_accuracies': [...], 'valid_accuracies': [...], 'train_accuracies': [...] } where the metrices values are lists that were filled during training.

	Return type

	dict

	
write_output(output)

	Writes the JSON output.

	Parameters

	
	output (dict) -- Output of the training loop of the runner.

	run_folder_name (str) -- The name of the output folder.

	file_name (str) -- The file name where the output is written to.

	
static write_per_epoch_summary(sess, loss_, acc_, current_step, per_epoch_summaries, summary_writer, phase)

	Writes the tensorboard epoch summary

	
static write_per_iter_summary(sess, per_iter_summaries, summary_writer, current_step)

	Writes the tensorboard iteration summary

Standard Runner

	
class deepobs.tensorflow.runners.StandardRunner(optimizer_class, hyperparameter_names)

	Bases: deepobs.tensorflow.runners.runner.TFRunner

	
__init__(optimizer_class, hyperparameter_names)

	Creates a new Runner instance

	Parameters

	
	optimizer_class -- The optimizer class of the optimizer that is run on the testproblems. For PyTorch this must be a subclass of torch.optim.Optimizer. For TensorFlow a subclass of tf.train.Optimizer.

	hyperparameter_names -- A nested dictionary that lists all hyperparameters of the optimizer, their type and their default values (if they have any).

Example

>>> optimizer_class = tf.train.MomentumOptimizer
>>> hyperparms = {'lr': {'type': float},
>>> 'momentum': {'type': float, 'default': 0.99},
>>> 'uses_nesterov': {'type': bool, 'default': False}}
>>> runner = StandardRunner(optimizer_class, hyperparms)

	
static create_testproblem(testproblem, batch_size, l2_reg, random_seed)

	Sets up the deepobs.tensorflow.testproblems.testproblem instance.

	Parameters

	
	testproblem (str) -- The name of the testproblem.

	batch_size (int) -- Batch size that is used for training

	l2_reg (float) -- Regularization factor

	random_seed (int) -- The random seed of the framework

	Returns

	An instance of deepobs.pytorch.testproblems.testproblem

	Return type

	deepobs.tensorflow.testproblems.testproblem

	
static evaluate(tproblem, sess, loss, phase)

	Computes average loss and accuracy in the evaluation phase.
:param tproblem: The testproblem instance.
:type tproblem: deepobs.tensorflow.testproblems.testproblem
:param sess: The current TensorFlow Session.
:type sess: tensorflow.Session
:param loss: The TensorFlow operation that computes the loss.
:param phase: The phase of the evaluation. Muste be one of 'TRAIN', 'VALID' or 'TEST'
:type phase: str

	
static init_summary(loss, learning_rate_var, batch_size, tb_log_dir)

	Initializes the tensorboard summaries

	
parse_args(testproblem, hyperparams, batch_size, num_epochs, random_seed, data_dir, output_dir, l2_reg, no_logs, train_log_interval, print_train_iter, tb_log, tb_log_dir, training_params)

	Constructs an argparse.ArgumentParser and parses the arguments from command line.

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	training_params (dict) -- Kwargs for the training method.

	Returns

	A dicionary of all arguments.

	Return type

	dict

	
run(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, skip_if_exists=False, **training_params)

	
	Runs a testproblem with the optimizer_class. Has the following tasks:

	
	setup testproblem

	run the training (must be implemented by subclass)

	merge and write output

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	skip_if_exists (bool) -- Skip training if the output already exists.

	training_params (dict) -- Kwargs for the training method.

	Returns

	{<...meta data...>, 'test_losses' : test_losses, 'valid_losses': valid_losses 'train_losses': train_losses, 'test_accuracies': test_accuracies, 'valid_accuracies': valid_accuracies 'train_accuracies': train_accuracies, } where <...meta data...> stores the run args.

	Return type

	dict

	
run_exists(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, **training_params)

	Return whether output file for this run already exists.

	Parameters

	run method. (See) --

	Returns

	The first parameter is True if the .json output file already exists, else False. The list contains the paths to the files that match the run.

	Return type

	bool, list(str)

	
training(tproblem, hyperparams, num_epochs, print_train_iter, train_log_interval, tb_log, tb_log_dir)

	Performs the training and stores the metrices.

	Parameters

	
	tproblem (deepobs.[tensorflow/pytorch]testproblems.testproblem) -- The testproblem instance to train on.

	hyperparams (dict) -- The optimizer hyperparameters to use for the training.

	num_epochs (int) -- The number of training epochs.

	print_train_iter (bool) -- Whether to print the training progress at every train_log_interval

	train_log_interval (int) -- Mini-batch interval for logging.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	**training_params (dict) -- Kwargs for additional training parameters that are implemented by subclass.

	Returns

	The logged metrices. Is of the form: {'test_losses' : [...], 'valid_losses': [...], 'train_losses': [...], 'test_accuracies': [...], 'valid_accuracies': [...], 'train_accuracies': [...] } where the metrices values are lists that were filled during training.

	Return type

	dict

	
write_output(output)

	Writes the JSON output.

	Parameters

	
	output (dict) -- Output of the training loop of the runner.

	run_folder_name (str) -- The name of the output folder.

	file_name (str) -- The file name where the output is written to.

	
static write_per_epoch_summary(sess, loss_, acc_, current_step, per_epoch_summaries, summary_writer, phase)

	Writes the tensorboard epoch summary

	
static write_per_iter_summary(sess, per_iter_summaries, summary_writer, current_step)

	Writes the tensorboard iteration summary

Learning Rate Schedule Runner

Using the learning rate schedule runner adds two more training parameters to the training loop, the epochs and factors for the learning rate decay. The example below shows how to use it in a run file, but these parameters are also automatically added to be command line arguments.

optimizer_class = tf.train.MomentumOptimizer
hyperparms = {'lr': {'type': float},
 'momentum': {'type': float, 'default': 0.99},
 'uses_nesterov': {'type': bool, 'default': False}}
schedule = {
 "name": "step",
 "lr_sched_epochs": [2, 4],
 "lr_sched_factors": [0.1, 0.01]
 }
runner = tfobs.runners.LearningRateScheduleRunner(optimizer_class, hyperparams)
runner.run(testproblem='quadratic_deep', hyperparams={'learning_rate': 1e-2}, num_epochs=10, lr_sched_epochs=schedule["lr_sched_epochs"], lr_sched_factors=schedule["lr_sched_factors"])

	
class deepobs.tensorflow.runners.LearningRateScheduleRunner(optimizer_class, hyperparameter_names)

	Bases: deepobs.tensorflow.runners.runner.TFRunner

	
__init__(optimizer_class, hyperparameter_names)

	Creates a new Runner instance

	Parameters

	
	optimizer_class -- The optimizer class of the optimizer that is run on the testproblems. For PyTorch this must be a subclass of torch.optim.Optimizer. For TensorFlow a subclass of tf.train.Optimizer.

	hyperparameter_names -- A nested dictionary that lists all hyperparameters of the optimizer, their type and their default values (if they have any).

Example

>>> optimizer_class = tf.train.MomentumOptimizer
>>> hyperparms = {'lr': {'type': float},
>>> 'momentum': {'type': float, 'default': 0.99},
>>> 'uses_nesterov': {'type': bool, 'default': False}}
>>> runner = StandardRunner(optimizer_class, hyperparms)

	
static create_testproblem(testproblem, batch_size, l2_reg, random_seed)

	Sets up the deepobs.tensorflow.testproblems.testproblem instance.

	Parameters

	
	testproblem (str) -- The name of the testproblem.

	batch_size (int) -- Batch size that is used for training

	l2_reg (float) -- Regularization factor

	random_seed (int) -- The random seed of the framework

	Returns

	An instance of deepobs.pytorch.testproblems.testproblem

	Return type

	deepobs.tensorflow.testproblems.testproblem

	
static evaluate(tproblem, sess, loss, phase)

	Computes average loss and accuracy in the evaluation phase.
:param tproblem: The testproblem instance.
:type tproblem: deepobs.tensorflow.testproblems.testproblem
:param sess: The current TensorFlow Session.
:type sess: tensorflow.Session
:param loss: The TensorFlow operation that computes the loss.
:param phase: The phase of the evaluation. Muste be one of 'TRAIN', 'VALID' or 'TEST'
:type phase: str

	
static init_summary(loss, learning_rate_var, batch_size, tb_log_dir)

	Initializes the tensorboard summaries

	
parse_args(testproblem, hyperparams, batch_size, num_epochs, random_seed, data_dir, output_dir, l2_reg, no_logs, train_log_interval, print_train_iter, tb_log, tb_log_dir, training_params)

	Constructs an argparse.ArgumentParser and parses the arguments from command line.

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	training_params (dict) -- Kwargs for the training method.

	Returns

	A dicionary of all arguments.

	Return type

	dict

	
run(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, skip_if_exists=False, **training_params)

	
	Runs a testproblem with the optimizer_class. Has the following tasks:

	
	setup testproblem

	run the training (must be implemented by subclass)

	merge and write output

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	skip_if_exists (bool) -- Skip training if the output already exists.

	training_params (dict) -- Kwargs for the training method.

	Returns

	{<...meta data...>, 'test_losses' : test_losses, 'valid_losses': valid_losses 'train_losses': train_losses, 'test_accuracies': test_accuracies, 'valid_accuracies': valid_accuracies 'train_accuracies': train_accuracies, } where <...meta data...> stores the run args.

	Return type

	dict

	
run_exists(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, **training_params)

	Return whether output file for this run already exists.

	Parameters

	run method. (See) --

	Returns

	The first parameter is True if the .json output file already exists, else False. The list contains the paths to the files that match the run.

	Return type

	bool, list(str)

	
training(tproblem, hyperparams, num_epochs, print_train_iter, train_log_interval, tb_log, tb_log_dir, lr_sched_epochs=None, lr_sched_factors=None)

	Performs the training and stores the metrices.

	Parameters

	
	tproblem (deepobs.[tensorflow/pytorch]testproblems.testproblem) -- The testproblem instance to train on.

	hyperparams (dict) -- The optimizer hyperparameters to use for the training.

	num_epochs (int) -- The number of training epochs.

	print_train_iter (bool) -- Whether to print the training progress at every train_log_interval

	train_log_interval (int) -- Mini-batch interval for logging.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	lr_sched_epochs (list) -- The epochs where to adjust the learning rate.

	lr_sched_factors (list) -- The corresponding factors by which to adjust the learning rate.

	Returns

	The logged metrices. Is of the form: {'test_losses' : [...], 'valid_losses': [...], 'train_losses': [...], 'test_accuracies': [...], 'valid_accuracies': [...], 'train_accuracies': [...] } where the metrices values are lists that were filled during training.

	Return type

	dict

	
write_output(output)

	Writes the JSON output.

	Parameters

	
	output (dict) -- Output of the training loop of the runner.

	run_folder_name (str) -- The name of the output folder.

	file_name (str) -- The file name where the output is written to.

	
static write_per_epoch_summary(sess, loss_, acc_, current_step, per_epoch_summaries, summary_writer, phase)

	Writes the tensorboard epoch summary

	
static write_per_iter_summary(sess, per_iter_summaries, summary_writer, current_step)

	Writes the tensorboard iteration summary

Config

The TensorFlow specific config of DeepOBS.

	
deepobs.tensorflow.config.set_float_dtype(dtype)

	

PyTorch

PyTorch

	Data Sets
	Quadratic Data Set

	MNIST Data Set

	FMNIST Data Set

	CIFAR-10 Data Set

	CIFAR-100 Data Set

	SVHN Data Set

	Tolstoi Data Set

	Test Problems
	Quadratic Test Problems

	MNIST Test Problems

	Fashion-MNIST Test Problems

	CIFAR-10 Test Problems

	CIFAR-100 Test Problems

	SVHN Test Problems

	Runner
	PT Runner

	Standard Runner

	Learning Rate Schedule Runner

	Config

Data Sets

Currently DeepOBS includes nine different data sets. Each data set inherits from
the same base class with the following signature.

	
class deepobs.pytorch.datasets.dataset.DataSet(batch_size)

	Base class for DeepOBS data sets.

	Parameters

	batch_size (int) -- The mini-batch size to use.

	
_make_train_and_valid_dataloader()

	Creates a torch data loader for the training and validation data with batches of size batch_size.

	
_make_train_eval_dataloader()

	Creates a torch data loader for the training evaluation data with batches of size batch_size.

	
_make_test_dataloader()

	Creates a torch data loader for the test data with batches of size batch_size.

	
_pin_memory

	Whether to pin memory for the dataloaders. Defaults to 'False' if 'cuda' is not the current device.

	
_num_workers

	The number of workers used for the dataloaders. It's value is set to the global variable NUM_WORKERS.

	
_train_dataloader

	A torch.utils.data.DataLoader instance that holds the training data.

	
_valid_dataloader

	A torch.utils.data.DataLoader instance that holds the validation data.

	
_train_eval_dataloader

	A torch.utils.data.DataLoader instance that holds the training evaluation data.

	
_test_dataloader

	A torch.utils.data.DataLoader instance that holds the test data.

After selecting a data set (i.e. CIFAR-10, Fahion-MNIST, etc.) we define four internal PyTorch dataloaders (i.e. train, train_eval, valid and test).
Those are splits of the original data set that are used for training, hyperparameter tuning and performance evaluation.
These internal data sets (also called DeepOBS data sets) are created as shown in the illustration below.

[image: ../../_images/DeepOBS_Data_Sets.png]

Data Sets

	Quadratic Data Set

	MNIST Data Set

	FMNIST Data Set

	CIFAR-10 Data Set

	CIFAR-100 Data Set

	SVHN Data Set

	Tolstoi Data Set

Quadratic Data Set

	
class deepobs.pytorch.datasets.quadratic.quadratic(batch_size, dim=100, train_size=1000, noise_level=0.6)

	DeepOBS data set class to create an n dimensional stochastic quadratic testproblem.

This toy data set consists of a fixed number (train_size) of iid draws
from a zero-mean normal distribution in dim dimensions with isotropic
covariance specified by noise_level.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (1000 for train and test) the
remainder is dropped in each epoch (after shuffling).

	dim (int) -- Dimensionality of the quadratic. Defaults to 100.

	train_size (int) -- Size of the dataset; will be used for train, train eval and
test datasets. Defaults to 1000.

	noise_level (float) -- Standard deviation of the data points around the mean.
The data points are drawn from a Gaussian distribution.
Defaults to 0.6.

MNIST Data Set

	
class deepobs.pytorch.datasets.mnist.mnist(batch_size, train_eval_size=10000)

	DeepOBS data set class for the MNIST [http://yann.lecun.com/exdb/mnist/] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (60 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
_make_dataloader()

	A helper that is shared by all three data loader methods.

FMNIST Data Set

	
class deepobs.pytorch.datasets.fmnist.fmnist(batch_size, train_eval_size=10000)

	DeepOBS data set class for the Fashion-MNIST (FMNIST) [https://github.com/zalandoresearch/fashion-mnist] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (60 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

CIFAR-10 Data Set

	
class deepobs.pytorch.datasets.cifar10.cifar10(batch_size, data_augmentation=True, train_eval_size=10000)

	DeepOBS data set class for the CIFAR-10 [https://www.cs.toronto.edu/~kriz/cifar.html] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (50 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, horizontal flipping, lighting augmentation) are
applied to the training data (but not the test data).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
_make_dataloader()

	A helper that is shared by all three data loader methods.

CIFAR-100 Data Set

	
class deepobs.pytorch.datasets.cifar100.cifar100(batch_size, data_augmentation=True, train_eval_size=10000)

	DeepOBS data set class for the CIFAR-100 [https://www.cs.toronto.edu/~kriz/cifar.html] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (50 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, horizontal flipping, lighting augmentation) are
applied to the training data (but not the test data).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
_make_dataloader()

	A helper that is shared by all three data loader methods.

SVHN Data Set

	
class deepobs.pytorch.datasets.svhn.svhn(batch_size, data_augmentation=True, train_eval_size=26032)

	DeepOBS data set class for the Street View House Numbers (SVHN) [http://ufldl.stanford.edu/housenumbers/] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (73 000 for train, 26 000
for test) the remainder is dropped in each epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, lighting augmentation) are applied to the
training data (but not the test data).

	train_eval_size (int) -- Size of the train eval dataset.
Defaults to 26 000 the size of the test set.

Tolstoi Data Set

	
class deepobs.pytorch.datasets.tolstoi.tolstoi(batch_size, seq_length=50, train_eval_size=653237)

	DeepOBS data set class for character prediction on War and Peace by Leo Tolstoi.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size the remainder is dropped in each
epoch (after shuffling).

	seq_length (int) -- Sequence length to be modeled in each step.
Defaults to 50.

	train_eval_size (int) -- Size of the train eval dataset.
Defaults to 653 237, the size of the test set.

Test Problems

Currently DeepOBS includes twenty-six different test problems. A test problem is
given by a combination of a data set and a model and is characterized by its
loss function.

Each test problem inherits from the same base class with the following signature.

	
class deepobs.pytorch.testproblems.TestProblem(batch_size, l2_reg=None)

	Base class for DeepOBS test problems.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-Regularization (weight decay) factor to use. If
not specified, the test problems revert to their respective defaults.
Note: Some test problems do not use regularization and this value will
be ignored in such a case.

	
_batch_size

	Batch_size for the data of this test problem.

	
_l2_reg

	The regularization factor for this test problem

	
data

	The dataset used by the test problem (datasets.DataSet instance).

	
loss_function

	The loss function for this test problem.

	
net

	The torch module (the neural network) that is trained.

	
train_init_op()

	Initializes the test problem for the
training phase.

	
train_eval_init_op()

	Initializes the test problem for
evaluating on training data.

	
test_init_op()

	Initializes the test problem for
evaluating on test data.

	
_get_next_batch()

	Returns the next batch of data of the current phase.

	
get_batch_loss_and_accuracy()

	Calculates the loss and accuracy of net on the next batch of the current phase.

	
set_up()

	Sets all public attributes.

	
get_batch_loss_and_accuracy(reduction='mean', add_regularization_if_available=True)

	Gets a new batch and calculates the loss and accuracy (if available)
on that batch.

	Parameters

	
	reduction (str) -- The reduction that is used for returning the loss. Can be 'mean', 'sum' or 'none' in which case each indivual loss in the mini-batch is returned as a tensor.

	add_regularization_if_available (bool) -- If true, regularization is added to the loss.

	Returns

	loss and accuracy of the model on the current batch.

	Return type

	float/torch.tensor, float

	
get_batch_loss_and_accuracy_func(reduction='mean', add_regularization_if_available=True)

	Get new batch and create forward function that calculates loss and accuracy (if available)
on that batch. This is a default implementation for image classification.
Testproblems with different calculation routines (e.g. RNNs) overwrite this method accordingly.

	Parameters

	
	reduction (str) -- The reduction that is used for returning the loss. Can be 'mean', 'sum' or 'none' in which case each indivual loss in the mini-batch is returned as a tensor.

	add_regularization_if_available (bool) -- If true, regularization is added to the loss.

	Returns

	The function that calculates the loss/accuracy on the current batch.

	Return type

	callable

	
get_regularization_groups()

	Creates regularization groups for the parameters.

	Returns

	A dictionary where the key is the regularization factor and the value is a list of parameters.

	Return type

	dict

	
get_regularization_loss()

	Returns the current regularization loss of the network based on the parameter groups.

	Returns

	If no regularzations is applied, it returns the integer 0. Else a torch.tensor that holds the regularization loss.

	Return type

	int or torch.tensor

	
set_up()

	Sets up the test problem.

	
test_init_op()

	Initializes the testproblem instance to test mode. I.e.
sets the iterator to the test set and sets the model to eval mode.

	
train_eval_init_op()

	Initializes the testproblem instance to train eval mode. I.e.
sets the iterator to the train evaluation set and sets the model to eval mode.

	
train_init_op()

	Initializes the testproblem instance to train mode. I.e.
sets the iterator to the training set and sets the model to train mode.

	
valid_init_op()

	Initializes the testproblem instance to validation mode. I.e.
sets the iterator to the validation set and sets the model to eval mode.

Note

Some of the test problems described here are based on more general implementations.
For example the Wide ResNet 40-4 network on Cifar-100 is based on the general
Wide ResNet architecture which is also implemented. Therefore, it is very easy
to include new Wide ResNets if necessary.

Test Problems

	Quadratic Test Problems
	Quadratic Deep

	MNIST Test Problems
	MNIST MLP

	MNIST 2c2d

	MNIST VAE

	Fashion-MNIST Test Problems
	Fashion-MNIST MLP

	Fashion-MNIST 2c2d

	Fashion-MNIST VAE

	CIFAR-10 Test Problems
	CIFAR-10 3c3d

	CIFAR-100 Test Problems
	CIFAR-100 3c3d

	CIFAR-100 All-CNN-C

	SVHN Test Problems
	SVHN Wide Resnet

Quadratic Test Problems

DeepOBS includes a stochastic quadratic problem with an eigenspectrum similar to
what has been reported for neural networks.

Other stochastic quadratic problems (of different dimensionality or with a
different Hessian structure) can be created easily using the net_quadratic_deep
class.

	
class deepobs.pytorch.testproblems.testproblems_modules.net_quadratic_deep(hessian)

	This architecture creates an output which corresponds to a loss functions of the form

\((\theta - x)^T * Q * (\theta - x)\)

with Hessian Q and "data" x coming from the quadratic data set, i.e.,
zero-mean normal.
The parameters are initialized to 1.

Test Problems

	Quadratic Deep

Quadratic Deep

	
class deepobs.pytorch.testproblems.quadratic_deep.quadratic_deep(batch_size, l2_reg=None)

	DeepOBS test problem class for a stochastic quadratic test problem 100dimensions. The 90 % of the eigenvalues of the Hessian are drawn from theinterval \((0.0, 1.0)\) and the other 10 % are from \((30.0, 60.0)\) simulating an eigenspectrum which has been reported for Deep Learning https://arxiv.org/abs/1611.01838.

This creatis a loss functions of the form

\(0.5* (\theta - x)^T * Q * (\theta - x)\)

with Hessian Q and "data" x coming from the quadratic data set, i.e.,
zero-mean normal.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
data

	The DeepOBS data set class for the quadratic problem.

	
loss_function

	None. The output of the model is the loss.

	
net

	The DeepOBS subclass of torch.nn.Module that is trained for this tesproblem (net_quadratic_deep).

	
get_batch_loss_and_accuracy_func(reduction='mean', add_regularization_if_available=True)

	Get new batch and create forward function that calculates loss and accuracy (if available)
on that batch.

	Parameters

	
	reduction (str) -- The reduction that is used for returning the loss. Can be 'mean', 'sum' or 'none' in which case each indivual loss in the mini-batch is returned as a tensor.

	add_regularization_if_available (bool) -- If true, regularization is added to the loss.

	Returns

	The function that calculates the loss/accuracy on the current batch.

	Return type

	callable

	
set_up()

	Sets up the test problem.

MNIST Test Problems

Test Problems

	MNIST MLP

	MNIST 2c2d

	MNIST VAE

MNIST MLP

	
class deepobs.pytorch.testproblems.mnist_mlp.mnist_mlp(batch_size, l2_reg=None)

	DeepOBS test problem class for a multi-layer perceptron neural network on Fashion-MNIST.

The network is build as follows:

	Four fully-connected layers with 1000, 500, 100 and 10
units per layer.

	The first three layers use ReLU activation, and the last one a softmax
activation.

	The biases are initialized to 0.0 and the weight matrices with
truncated normal (standard deviation of 3e-2)

	The model uses a cross entropy loss.

	No regularization is used.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) --
	No L2-Regularization (weight decay) is used in this

	test problem. Defaults to None and any input here is ignored.

	
data

	The DeepOBS data set class for Fashion-MNIST.

	
loss_function

	The loss function for this testproblem is torch.nn.CrossEntropyLoss()

	
net

	The DeepOBS subclass of torch.nn.Module that is trained for this tesproblem (net_mlp).

	
set_up()

	Sets up the vanilla CNN test problem on MNIST.

MNIST 2c2d

	
class deepobs.pytorch.testproblems.mnist_2c2d.mnist_2c2d(batch_size, l2_reg=None)

	DeepOBS test problem class for a two convolutional and two dense layered neural network on MNIST.

The network has been adapted from the TensorFlow tutorial [https://www.tensorflow.org/tutorials/estimators/cnn] and consists of

	two conv layers with ReLUs, each followed by max-pooling

	one fully-connected layers with ReLUs

	10-unit output layer with softmax

	cross-entropy loss

	No regularization

The weight matrices are initialized with truncated normal (standard deviation
of 0.05) and the biases are initialized to 0.05.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
set_up()

	Sets up the vanilla CNN test problem on MNIST.

MNIST VAE

	
class deepobs.pytorch.testproblems.mnist_vae.mnist_vae(batch_size, l2_reg=None)

	DeepOBS test problem class for a variational autoencoder (VAE) on MNIST.

The network has been adapted from the here [https://towardsdatascience.com/teaching-a-variational-autoencoder-vae-to-draw-mnist-characters-978675c95776]
and consists of an encoder:

	With three convolutional layers with each 64 filters.

	Using a leaky ReLU activation function with \(\alpha = 0.3\)

	Dropout layers after each convolutional layer with a rate of 0.2.

and an decoder:

	With two dense layers with 24 and 49 units and leaky ReLU activation.

	With three deconvolutional layers with each 64 filters.

	Dropout layers after the first two deconvolutional layer with a rate of 0.2.

	A final dense layer with 28 x 28 units and sigmoid activation.

No regularization is used.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
data

	The DeepOBS data set class for MNIST.

	
loss_function

	The loss function for this testproblem (vae_loss_function as defined in testproblem_utils)

	
net

	The DeepOBS subclass of torch.nn.Module that is trained for this tesproblem (net_vae).

	
get_batch_loss_and_accuracy_func(reduction='mean', add_regularization_if_available=True)

	Get new batch and create forward function that calculates loss and accuracy (if available)
on that batch.

	Parameters

	
	reduction (str) -- The reduction that is used for returning the loss. Can be 'mean', 'sum' or 'none' in which case each indivual loss in the mini-batch is returned as a tensor.

	add_regularization_if_available (bool) -- If true, regularization is added to the loss.

	Returns

	The function that calculates the loss/accuracy on the current batch.

	Return type

	callable

	
set_up()

	Sets up the vanilla CNN test problem on MNIST.

Fashion-MNIST Test Problems

Test Problems

	Fashion-MNIST MLP

	Fashion-MNIST 2c2d

	Fashion-MNIST VAE

Fashion-MNIST MLP

	
class deepobs.pytorch.testproblems.fmnist_mlp.fmnist_mlp(batch_size, l2_reg=None)

	DeepOBS test problem class for a multi-layer perceptron neural network on Fashion-MNIST.

The network is build as follows:

	Four fully-connected layers with 1000, 500, 100 and 10
units per layer.

	The first three layers use ReLU activation, and the last one a softmax
activation.

	The biases are initialized to 0.0 and the weight matrices with
truncated normal (standard deviation of 3e-2)

	The model uses a cross entropy loss.

	No regularization is used.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) --
	No L2-Regularization (weight decay) is used in this

	test problem. Defaults to None and any input here is ignored.

	
data

	The DeepOBS data set class for Fashion-MNIST.

	
loss_function

	The loss function for this testproblem is torch.nn.CrossEntropyLoss()

	
net

	The DeepOBS subclass of torch.nn.Module that is trained for this tesproblem (net_mlp).

	
set_up()

	Sets up the vanilla MLP test problem on Fashion-MNIST.

Fashion-MNIST 2c2d

	
class deepobs.pytorch.testproblems.fmnist_2c2d.fmnist_2c2d(batch_size, l2_reg=None)

	DeepOBS test problem class for a two convolutional and two dense layered neural network on Fashion-MNIST.

The network has been adapted from the TensorFlow tutorial [https://www.tensorflow.org/tutorials/estimators/cnn] and consists of

	two conv layers with ReLUs, each followed by max-pooling

	one fully-connected layers with ReLUs

	10-unit output layer with softmax

	cross-entropy loss

	No regularization

The weight matrices are initialized with truncated normal (standard deviation
of 0.05) and the biases are initialized to 0.05.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
set_up()

	Sets up the vanilla CNN test problem on Fashion-MNIST.

Fashion-MNIST VAE

	
class deepobs.pytorch.testproblems.fmnist_vae.fmnist_vae(batch_size, l2_reg=None)

	DeepOBS test problem class for a variational autoencoder (VAE) on Fashion-MNIST.

The network has been adapted from the here [https://towardsdatascience.com/teaching-a-variational-autoencoder-vae-to-draw-mnist-characters-978675c95776]
and consists of an encoder:

	With three convolutional layers with each 64 filters.

	Using a leaky ReLU activation function with \(\alpha = 0.3\)

	Dropout layers after each convolutional layer with a rate of 0.2.

and an decoder:

	With two dense layers with 24 and 49 units and leaky ReLU activation.

	With three deconvolutional layers with each 64 filters.

	Dropout layers after the first two deconvolutional layer with a rate of 0.2.

	A final dense layer with 28 x 28 units and sigmoid activation.

No regularization is used.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- No L2-Regularization (weight decay) is used in this
test problem. Defaults to None and any input here is ignored.

	
data

	The DeepOBS data set class for Fashion-MNIST.

	
loss_function

	The loss function for this testproblem (vae_loss_function as defined in testproblem_utils)

	
net

	The DeepOBS subclass of torch.nn.Module that is trained for this tesproblem (net_vae).

	
get_batch_loss_and_accuracy_func(reduction='mean', add_regularization_if_available=True)

	Gets a new batch and calculates the loss and accuracy (if available)
on that batch. This is a default implementation for image classification.
Testproblems with different calculation routines (e.g. RNNs) overwrite this method accordingly.

	Parameters

	return_forward_func (bool) -- If True, the call also returns a function that calculates the loss on the current batch. Can be used if you need to access the forward path twice.

	Returns

	loss and accuracy of the model on the current batch. If return_forward_func is True it also returns the function that calculates the loss on the current batch.

	Return type

	float, float, (callable)

	
set_up()

	Sets up the test problem.

CIFAR-10 Test Problems

Test Problems

	CIFAR-10 3c3d

CIFAR-10 3c3d

	
class deepobs.pytorch.testproblems.cifar10_3c3d.cifar10_3c3d(batch_size, l2_reg=0.002)

	DeepOBS test problem class for a three convolutional and three dense layered neural network on Cifar-10.

The network consists of

	three conv layers with ReLUs, each followed by max-pooling

	two fully-connected layers with 512 and 256 units and ReLU activation

	10-unit output layer with softmax

	cross-entropy loss

	L2 regularization on the weights (but not the biases) with a default
factor of 0.002

The weight matrices are initialized using Xavier initialization and the biases
are initialized to 0.0.

A working training setting is batch size = 128, num_epochs = 100 and
SGD with learning rate of 0.01.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases. Defaults to 0.002.

	
data

	The DeepOBS data set class for Cifar-10.

	
loss_function

	The loss function for this testproblem is torch.nn.CrossEntropyLoss()

	
net

	The DeepOBS subclass of torch.nn.Module that is trained for this tesproblem (net_cifar10_3c3d).

	
get_regularization_loss()

	Returns the current regularization loss of the network state.

	
get_regularization_groups()

	Creates regularization groups for the parameters.

	Returns

	A dictionary where the key is the regularization factor and the value is a list of parameters.

	Return type

	dict

	
set_up()

	Set up the vanilla CNN test problem on Cifar-10.

CIFAR-100 Test Problems

Test Problems

	CIFAR-100 3c3d

	CIFAR-100 All-CNN-C

CIFAR-100 3c3d

	
class deepobs.pytorch.testproblems.cifar100_3c3d.cifar100_3c3d(batch_size, l2_reg=0.002)

	DeepOBS test problem class for a three convolutional and three dense layered neural network on Cifar-100.

The network consists of

	three conv layers with ReLUs, each followed by max-pooling

	two fully-connected layers with 512 and 256 units and ReLU activation

	100-unit output layer with softmax

	cross-entropy loss

	L2 regularization on the weights (but not the biases) with a default
factor of 0.002

The weight matrices are initialized using Xavier initialization and the biases
are initialized to 0.0.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases. Defaults to 0.002.

	
data

	The DeepOBS data set class for Cifar-100.

	
loss_function

	The loss function for this testproblem is torch.nn.CrossEntropyLoss().

	
net

	The DeepOBS subclass of torch.nn.Module that is trained for this tesproblem (net_cifar10_3c3d with 100 outputs).

	
get_regularization_loss()

	Returns the current regularization loss of the network state.

	
get_regularization_groups()

	Creates regularization groups for the parameters.

	Returns

	A dictionary where the key is the regularization factor and the value is a list of parameters.

	Return type

	dict

	
set_up()

	Set up the vanilla CNN test problem on Cifar-100.

CIFAR-100 All-CNN-C

	
class deepobs.pytorch.testproblems.cifar100_allcnnc.cifar100_allcnnc(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the All Convolutional Neural Network C
on Cifar-100.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1412.6806].

The paper does not comment on initialization; here we use Xavier for conv
filters and constant 0.1 for biases.

L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

The reference training parameters from the paper are batch size = 256,
num_epochs = 350 using the Momentum optimizer with \(\mu = 0.9\) and
an initial learning rate of \(\alpha = 0.05\) and decrease by a factor of
10 after 200, 250 and 300 epochs.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
get_regularization_groups()

	Creates regularization groups for the parameters.

	Returns

	A dictionary where the key is the regularization factor and the value is a list of parameters.

	Return type

	dict

	
set_up()

	Set up the All CNN C test problem on Cifar-100.

SVHN Test Problems

Test Problems

	SVHN Wide Resnet

SVHN Wide Resnet

	
class deepobs.pytorch.testproblems.svhn_wrn164.svhn_wrn164(batch_size, l2_reg=0.0005)

	DeepOBS test problem class for the Wide Residual Network 16-4 architecture for SVHN.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1605.07146].
L2-Regularization is used on the weights (but not the biases)
which defaults to 5e-4.

Training settings recommended in the original paper [https://arxiv.org/abs/1605.07146]:
batch size = 128, num_epochs = 160 using the Momentum optimizer
with \(\mu = 0.9\) and an initial learning rate of 0.01 with a decrease by
0.1 after 80 and 120 epochs.

	Parameters

	
	batch_size (int) -- Batch size to use.

	l2_reg (float) -- L2-regularization factor. L2-Regularization (weight decay)
is used on the weights but not the biases.
Defaults to 5e-4.

	
get_regularization_groups()

	Creates regularization groups for the parameters.

	Returns

	A dictionary where the key is the regularization factor and the value is a list of parameters.

	Return type

	dict

	
set_up()

	Set up the Wide ResNet 16-4 test problem on SVHN.

Runner

Runner take care of the actual training process in DeepOBS. They also log
performance statistics such as the loss and accuracy on the test and training
data set.

The output of those runners is saved into JSON files and optionally also
TensorFlow output files that can be plotted in real-time using Tensorboard.

Runner

	PT Runner

	Standard Runner

	Learning Rate Schedule Runner

PT Runner

The base class of all PyTorch Runner.

	
class deepobs.pytorch.runners.PTRunner(optimizer_class, hyperparameter_names)

	Bases: deepobs.abstract_runner.abstract_runner.Runner

The abstract class for runner in the pytorch framework.

	
__init__(optimizer_class, hyperparameter_names)

	Creates a new Runner instance

	Parameters

	
	optimizer_class -- The optimizer class of the optimizer that is run on the testproblems. For PyTorch this must be a subclass of torch.optim.Optimizer. For TensorFlow a subclass of tf.train.Optimizer.

	hyperparameter_names -- A nested dictionary that lists all hyperparameters of the optimizer, their type and their default values (if they have any).

Example

>>> optimizer_class = tf.train.MomentumOptimizer
>>> hyperparms = {'lr': {'type': float},
>>> 'momentum': {'type': float, 'default': 0.99},
>>> 'uses_nesterov': {'type': bool, 'default': False}}
>>> runner = StandardRunner(optimizer_class, hyperparms)

	
static create_testproblem(testproblem, batch_size, l2_reg, random_seed)

	Sets up the deepobs.pytorch.testproblems.testproblem instance.

	Parameters

	
	testproblem (str) -- The name of the testproblem.

	batch_size (int) -- Batch size that is used for training

	l2_reg (float) -- Regularization factor

	random_seed (int) -- The random seed of the framework

	Returns

	An instance of deepobs.pytorch.testproblems.testproblem

	Return type

	deepobs.pytorch.testproblems.testproblem

	
static evaluate(tproblem, phase)

	Evaluates the performance of the current state of the model
of the testproblem instance.
Has to be called in the beggining of every epoch within the
training method. Returns the losses and accuracies.

	Parameters

	
	tproblem (testproblem) -- The testproblem instance to evaluate

	phase (str) -- The phase of the evaluation. Must be one of 'TRAIN', 'VALID' or 'TEST'

	Returns

	The loss of the current state.
float: The accuracy of the current state.

	Return type

	float

	
parse_args(testproblem, hyperparams, batch_size, num_epochs, random_seed, data_dir, output_dir, l2_reg, no_logs, train_log_interval, print_train_iter, tb_log, tb_log_dir, training_params)

	Constructs an argparse.ArgumentParser and parses the arguments from command line.

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	training_params (dict) -- Kwargs for the training method.

	Returns

	A dicionary of all arguments.

	Return type

	dict

	
run(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, skip_if_exists=False, **training_params)

	
	Runs a testproblem with the optimizer_class. Has the following tasks:

	
	setup testproblem

	run the training (must be implemented by subclass)

	merge and write output

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	skip_if_exists (bool) -- Skip training if the output already exists.

	training_params (dict) -- Kwargs for the training method.

	Returns

	{<...meta data...>, 'test_losses' : test_losses, 'valid_losses': valid_losses 'train_losses': train_losses, 'test_accuracies': test_accuracies, 'valid_accuracies': valid_accuracies 'train_accuracies': train_accuracies, } where <...meta data...> stores the run args.

	Return type

	dict

	
run_exists(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, **training_params)

	Return whether output file for this run already exists.

	Parameters

	run method. (See) --

	Returns

	The first parameter is True if the .json output file already exists, else False. The list contains the paths to the files that match the run.

	Return type

	bool, list(str)

	
training(tproblem, hyperparams, num_epochs, print_train_iter, train_log_interval, tb_log, tb_log_dir, **training_params)

	Performs the training and stores the metrices.

	Parameters

	
	tproblem (deepobs.[tensorflow/pytorch]testproblems.testproblem) -- The testproblem instance to train on.

	hyperparams (dict) -- The optimizer hyperparameters to use for the training.

	num_epochs (int) -- The number of training epochs.

	print_train_iter (bool) -- Whether to print the training progress at every train_log_interval

	train_log_interval (int) -- Mini-batch interval for logging.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	**training_params (dict) -- Kwargs for additional training parameters that are implemented by subclass.

	Returns

	The logged metrices. Is of the form: {'test_losses' : [...], 'valid_losses': [...], 'train_losses': [...], 'test_accuracies': [...], 'valid_accuracies': [...], 'train_accuracies': [...] } where the metrices values are lists that were filled during training.

	Return type

	dict

	
write_output(output)

	Writes the JSON output.

	Parameters

	
	output (dict) -- Output of the training loop of the runner.

	run_folder_name (str) -- The name of the output folder.

	file_name (str) -- The file name where the output is written to.

Standard Runner

	
class deepobs.pytorch.runners.StandardRunner(optimizer_class, hyperparameter_names)

	Bases: deepobs.pytorch.runners.runner.PTRunner

A standard runner. Can run a normal training loop with fixed
hyperparams. It should be used as a template to implement custom runners.

	
__init__(optimizer_class, hyperparameter_names)

	Creates a new Runner instance

	Parameters

	
	optimizer_class -- The optimizer class of the optimizer that is run on the testproblems. For PyTorch this must be a subclass of torch.optim.Optimizer. For TensorFlow a subclass of tf.train.Optimizer.

	hyperparameter_names -- A nested dictionary that lists all hyperparameters of the optimizer, their type and their default values (if they have any).

Example

>>> optimizer_class = tf.train.MomentumOptimizer
>>> hyperparms = {'lr': {'type': float},
>>> 'momentum': {'type': float, 'default': 0.99},
>>> 'uses_nesterov': {'type': bool, 'default': False}}
>>> runner = StandardRunner(optimizer_class, hyperparms)

	
static create_testproblem(testproblem, batch_size, l2_reg, random_seed)

	Sets up the deepobs.pytorch.testproblems.testproblem instance.

	Parameters

	
	testproblem (str) -- The name of the testproblem.

	batch_size (int) -- Batch size that is used for training

	l2_reg (float) -- Regularization factor

	random_seed (int) -- The random seed of the framework

	Returns

	An instance of deepobs.pytorch.testproblems.testproblem

	Return type

	deepobs.pytorch.testproblems.testproblem

	
static evaluate(tproblem, phase)

	Evaluates the performance of the current state of the model
of the testproblem instance.
Has to be called in the beggining of every epoch within the
training method. Returns the losses and accuracies.

	Parameters

	
	tproblem (testproblem) -- The testproblem instance to evaluate

	phase (str) -- The phase of the evaluation. Must be one of 'TRAIN', 'VALID' or 'TEST'

	Returns

	The loss of the current state.
float: The accuracy of the current state.

	Return type

	float

	
parse_args(testproblem, hyperparams, batch_size, num_epochs, random_seed, data_dir, output_dir, l2_reg, no_logs, train_log_interval, print_train_iter, tb_log, tb_log_dir, training_params)

	Constructs an argparse.ArgumentParser and parses the arguments from command line.

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	training_params (dict) -- Kwargs for the training method.

	Returns

	A dicionary of all arguments.

	Return type

	dict

	
run(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, skip_if_exists=False, **training_params)

	
	Runs a testproblem with the optimizer_class. Has the following tasks:

	
	setup testproblem

	run the training (must be implemented by subclass)

	merge and write output

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	skip_if_exists (bool) -- Skip training if the output already exists.

	training_params (dict) -- Kwargs for the training method.

	Returns

	{<...meta data...>, 'test_losses' : test_losses, 'valid_losses': valid_losses 'train_losses': train_losses, 'test_accuracies': test_accuracies, 'valid_accuracies': valid_accuracies 'train_accuracies': train_accuracies, } where <...meta data...> stores the run args.

	Return type

	dict

	
run_exists(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, **training_params)

	Return whether output file for this run already exists.

	Parameters

	run method. (See) --

	Returns

	The first parameter is True if the .json output file already exists, else False. The list contains the paths to the files that match the run.

	Return type

	bool, list(str)

	
training(tproblem, hyperparams, num_epochs, print_train_iter, train_log_interval, tb_log, tb_log_dir)

	Performs the training and stores the metrices.

	Parameters

	
	tproblem (deepobs.[tensorflow/pytorch]testproblems.testproblem) -- The testproblem instance to train on.

	hyperparams (dict) -- The optimizer hyperparameters to use for the training.

	num_epochs (int) -- The number of training epochs.

	print_train_iter (bool) -- Whether to print the training progress at every train_log_interval

	train_log_interval (int) -- Mini-batch interval for logging.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	**training_params (dict) -- Kwargs for additional training parameters that are implemented by subclass.

	Returns

	The logged metrices. Is of the form: {'test_losses' : [...], 'valid_losses': [...], 'train_losses': [...], 'test_accuracies': [...], 'valid_accuracies': [...], 'train_accuracies': [...] } where the metrices values are lists that were filled during training.

	Return type

	dict

	
write_output(output)

	Writes the JSON output.

	Parameters

	
	output (dict) -- Output of the training loop of the runner.

	run_folder_name (str) -- The name of the output folder.

	file_name (str) -- The file name where the output is written to.

Learning Rate Schedule Runner

Using the learning rate schedule runner adds two more training parameters to the training loop, the epochs and factors for the learning rate decay. The example below shows how to use it in a run file, but these parameters are also automatically added to be command line arguments.

optimizer_class = tf.train.MomentumOptimizer
hyperparms = {'lr': {'type': float},
 'momentum': {'type': float, 'default': 0.99},
 'uses_nesterov': {'type': bool, 'default': False}}
schedule = {
 "name": "step",
 "lr_sched_epochs": [2, 4],
 "lr_sched_factors": [0.1, 0.01]
 }
runner = tfobs.runners.LearningRateScheduleRunner(optimizer_class, hyperparams)
runner.run(testproblem='quadratic_deep', hyperparams={'learning_rate': 1e-2}, num_epochs=10, lr_sched_epochs=schedule["lr_sched_epochs"], lr_sched_factors=schedule["lr_sched_factors"])

	
class deepobs.pytorch.runners.LearningRateScheduleRunner(optimizer_class, hyperparameter_names)

	Bases: deepobs.pytorch.runners.runner.PTRunner

A runner for learning rate schedules. Can run a normal training loop with fixed hyperparams or a learning rate
schedule. It should be used as a template to implement custom runners.

	
__init__(optimizer_class, hyperparameter_names)

	Creates a new Runner instance

	Parameters

	
	optimizer_class -- The optimizer class of the optimizer that is run on the testproblems. For PyTorch this must be a subclass of torch.optim.Optimizer. For TensorFlow a subclass of tf.train.Optimizer.

	hyperparameter_names -- A nested dictionary that lists all hyperparameters of the optimizer, their type and their default values (if they have any).

Example

>>> optimizer_class = tf.train.MomentumOptimizer
>>> hyperparms = {'lr': {'type': float},
>>> 'momentum': {'type': float, 'default': 0.99},
>>> 'uses_nesterov': {'type': bool, 'default': False}}
>>> runner = StandardRunner(optimizer_class, hyperparms)

	
static create_testproblem(testproblem, batch_size, l2_reg, random_seed)

	Sets up the deepobs.pytorch.testproblems.testproblem instance.

	Parameters

	
	testproblem (str) -- The name of the testproblem.

	batch_size (int) -- Batch size that is used for training

	l2_reg (float) -- Regularization factor

	random_seed (int) -- The random seed of the framework

	Returns

	An instance of deepobs.pytorch.testproblems.testproblem

	Return type

	deepobs.pytorch.testproblems.testproblem

	
static evaluate(tproblem, phase)

	Evaluates the performance of the current state of the model
of the testproblem instance.
Has to be called in the beggining of every epoch within the
training method. Returns the losses and accuracies.

	Parameters

	
	tproblem (testproblem) -- The testproblem instance to evaluate

	phase (str) -- The phase of the evaluation. Must be one of 'TRAIN', 'VALID' or 'TEST'

	Returns

	The loss of the current state.
float: The accuracy of the current state.

	Return type

	float

	
parse_args(testproblem, hyperparams, batch_size, num_epochs, random_seed, data_dir, output_dir, l2_reg, no_logs, train_log_interval, print_train_iter, tb_log, tb_log_dir, training_params)

	Constructs an argparse.ArgumentParser and parses the arguments from command line.

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	training_params (dict) -- Kwargs for the training method.

	Returns

	A dicionary of all arguments.

	Return type

	dict

	
run(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, skip_if_exists=False, **training_params)

	
	Runs a testproblem with the optimizer_class. Has the following tasks:

	
	setup testproblem

	run the training (must be implemented by subclass)

	merge and write output

	Parameters

	
	testproblem (str) -- Name of the testproblem.

	hyperparams (dict) -- The explizit values of the hyperparameters of the optimizer that are used for training

	batch_size (int) -- Mini-batch size for the training data.

	num_epochs (int) -- The number of training epochs.

	random_seed (int) -- The torch random seed.

	data_dir (str) -- The path where the data is stored.

	output_dir (str) -- Path of the folder where the results are written to.

	l2_reg (float) -- Regularization factor for the testproblem.

	no_logs (bool) -- Whether to write the output or not.

	train_log_interval (int) -- Mini-batch interval for logging.

	print_train_iter (bool) -- Whether to print the training progress at each train_log_interval.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	skip_if_exists (bool) -- Skip training if the output already exists.

	training_params (dict) -- Kwargs for the training method.

	Returns

	{<...meta data...>, 'test_losses' : test_losses, 'valid_losses': valid_losses 'train_losses': train_losses, 'test_accuracies': test_accuracies, 'valid_accuracies': valid_accuracies 'train_accuracies': train_accuracies, } where <...meta data...> stores the run args.

	Return type

	dict

	
run_exists(testproblem=None, hyperparams=None, batch_size=None, num_epochs=None, random_seed=None, data_dir=None, output_dir=None, l2_reg=None, no_logs=None, train_log_interval=None, print_train_iter=None, tb_log=None, tb_log_dir=None, **training_params)

	Return whether output file for this run already exists.

	Parameters

	run method. (See) --

	Returns

	The first parameter is True if the .json output file already exists, else False. The list contains the paths to the files that match the run.

	Return type

	bool, list(str)

	
training(tproblem, hyperparams, num_epochs, print_train_iter, train_log_interval, tb_log, tb_log_dir, lr_sched_epochs=None, lr_sched_factors=None)

	Performs the training and stores the metrices.

	Parameters

	
	tproblem (deepobs.[tensorflow/pytorch]testproblems.testproblem) -- The testproblem instance to train on.

	hyperparams (dict) -- The optimizer hyperparameters to use for the training.

	num_epochs (int) -- The number of training epochs.

	print_train_iter (bool) -- Whether to print the training progress at every train_log_interval

	train_log_interval (int) -- Mini-batch interval for logging.

	tb_log (bool) -- Whether to use tensorboard logging or not

	tb_log_dir (str) -- The path where to save tensorboard events.

	lr_sched_epochs (list) -- The epochs where to adjust the learning rate.

	lr_sched_factors (list) -- The corresponding factors by which to adjust the learning rate.

	Returns

	The logged metrices. Is of the form: {'test_losses' : [...], 'valid_losses': [...], 'train_losses': [...], 'test_accuracies': [...], 'valid_accuracies': [...], 'train_accuracies': [...] } where the metrices values are lists that were filled during training.

	Return type

	dict

	
write_output(output)

	Writes the JSON output.

	Parameters

	
	output (dict) -- Output of the training loop of the runner.

	run_folder_name (str) -- The name of the output folder.

	file_name (str) -- The file name where the output is written to.

Config

The PyTorch specific config of DeepOBS.

	
deepobs.pytorch.config.set_num_workers(num_workers)

	Sets the number of workers that are used in the torch DataLoaders.

	Parameters

	num_workers (int) -- The number of workers that are used for data loading.

	
deepobs.pytorch.config.set_is_deterministic(is_deterministic)

	Sets whether PyTorch should try to run deterministic.

	Parameters

	is_deterministic (bool) -- If True, this flag sets: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False. However, full determinism is not guaranteed. For more information, see: https://pytorch.org/docs/stable/notes/randomness.html

	
deepobs.pytorch.config.set_default_device(device)

	Sets the device on which the PyTorch experiments are run.

	Parameters

	device (str) -- Device on which to run the PyTorch test problems. E.g. 'cuda' or 'cuda:0'

Tuner

Tuner

	Grid Search

	Random Search

	Gaussian Process

	Tuner

	Parallelized Tuner

	Tuning Utilities
	General Utilities

	Bayesian Specific Utilities

Grid Search

	
class deepobs.tuner.GridSearch(optimizer_class, hyperparam_names, grid, ressources, runner)

	Bases: deepobs.tuner.tuner.ParallelizedTuner

A basic Grid Search tuner.

	
__init__(optimizer_class, hyperparam_names, grid, ressources, runner)

	
	Parameters

	grid (dict) -- Holds the discrete values for each hyperparameter as lists.

	
generate_commands_script(testproblem, run_script, output_dir='./results', random_seed=42, generation_dir='./command_scripts', **kwargs)

	
	Parameters

	
	testproblem (str) -- Testproblem for which to generate commands.

	run_script (str) -- Name the run script that is used from the command line.

	output_dir (str) -- The output path where the execution results are written to.

	random_seed (int) -- The random seed for the tuning.

	generation_dir (str) -- The path to the directory where the generated scripts are written to.

	Returns

	The relative file path to the generated commands script.

	Return type

	str

	
generate_commands_script_for_testset(testset, *args, **kwargs)

	Generates command scripts for a whole testset.
:param testset: A list of the testproblem strings.
:type testset: list

	
tune(testproblem, output_dir='./results', random_seed=42, rerun_best_setting=False, **kwargs)

	Tunes the optimizer on the test problem.
:param testproblem: The test problem to tune the optimizer on.
:type testproblem: str
:param output_dir: The output directory for the results.
:type output_dir: str
:param random_seed: Random seed for the whole truning process. Every individual run is seeded by it.
:type random_seed: int
:param rerun_best_setting: Whether to automatically rerun the best setting with 10 different seeds.
:type rerun_best_setting: bool

	
tune_on_testset(testset, *args, **kwargs)

	Tunes the hyperparameter on a whole testset.
:param testset: A list of testproblems.
:type testset: list

Random Search

	
class deepobs.tuner.RandomSearch(optimizer_class, hyperparam_names, distributions, ressources, runner)

	Bases: deepobs.tuner.tuner.ParallelizedTuner

A basic Random Search tuner.

	
__init__(optimizer_class, hyperparam_names, distributions, ressources, runner)

	
	Parameters

	distributions (dict) -- Holds the distributions for each hyperparameter. Each distribution must implement an rvs() method to draw random variates. For instance, all scipy.stats.distribution distributions are applicable.

	
generate_commands_script(testproblem, run_script, output_dir='./results', random_seed=42, generation_dir='./command_scripts', **kwargs)

	
	Parameters

	
	testproblem (str) -- Testproblem for which to generate commands.

	run_script (str) -- Name the run script that is used from the command line.

	output_dir (str) -- The output path where the execution results are written to.

	random_seed (int) -- The random seed for the tuning.

	generation_dir (str) -- The path to the directory where the generated scripts are written to.

	Returns

	The relative file path to the generated commands script.

	Return type

	str

	
generate_commands_script_for_testset(testset, *args, **kwargs)

	Generates command scripts for a whole testset.
:param testset: A list of the testproblem strings.
:type testset: list

	
tune(testproblem, output_dir='./results', random_seed=42, rerun_best_setting=False, **kwargs)

	Tunes the optimizer on the test problem.
:param testproblem: The test problem to tune the optimizer on.
:type testproblem: str
:param output_dir: The output directory for the results.
:type output_dir: str
:param random_seed: Random seed for the whole truning process. Every individual run is seeded by it.
:type random_seed: int
:param rerun_best_setting: Whether to automatically rerun the best setting with 10 different seeds.
:type rerun_best_setting: bool

	
tune_on_testset(testset, *args, **kwargs)

	Tunes the hyperparameter on a whole testset.
:param testset: A list of testproblems.
:type testset: list

Gaussian Process

	
class deepobs.tuner.GP(optimizer_class, hyperparam_names, bounds, ressources, runner, transformations=None)

	Bases: deepobs.tuner.tuner.Tuner

A Bayesian optimization tuner that uses a Gaussian Process surrogate.

	
__init__(optimizer_class, hyperparam_names, bounds, ressources, runner, transformations=None)

	
	Parameters

	
	optimizer_class (framework optimizer class) -- The optimizer to tune.

	hyperparam_names (dict) -- Nested dictionary that holds the name, type and default values of the hyperparameters

	bounds (dict) -- A dict where the key is the hyperparameter name and the value is a tuple of its bounds.

	ressources (int) -- The number of total evaluations of the tuning process.

	transformations (dict) -- A dict where the key is the hyperparameter name and the value is a callable that returns the transformed hyperparameter.

	runner -- The DeepOBS runner which is used for each evaluation.

	
tune(testproblem, output_dir='./results', random_seed=42, n_init_samples=5, tuning_summary=True, plotting_summary=True, kernel=None, acq_type='ucb', acq_kappa=2.576, acq_xi=0.0, mode='final', rerun_best_setting=False, **kwargs)

	Tunes the optimizer hyperparameters by evaluating a Gaussian process surrogate with an acquisition function.
:param testproblem: The test problem to tune the optimizer on.
:type testproblem: str
:param output_dir: The output directory for the results.
:type output_dir: str
:param random_seed: Random seed for the whole truning process. Every individual run is seeded by it.
:type random_seed: int
:param n_init_samples: The number of random exploration samples in the beginning of the tuning process.
:type n_init_samples: int
:param tuning_summary: Whether to write an additional tuning summary. Can be used to get an overview over the tuning progress
:type tuning_summary: bool
:param plotting_summary: Whether to store additional objects that can be used to plot the posterior.
:type plotting_summary: bool
:param kernel: The kernel of the GP.
:type kernel: Sklearn.gaussian_process.kernels.Kernel
:param acq_type: The type of acquisition function to use. Muste be one of ucb, ei, poi.
:type acq_type: str
:param acq_kappa: Scaling parameter of the acquisition function.
:type acq_kappa: float
:param acq_xi: Scaling parameter of the acquisition function.
:type acq_xi: float
:param mode: The mode that is used to evaluate the cost. Must be one of final or best.
:type mode: str
:param rerun_best_setting: Whether to automatically rerun the best setting with 10 different seeds.
:type rerun_best_setting: bool

	
tune_on_testset(testset, *args, **kwargs)

	Tunes the hyperparameter on a whole testset.
:param testset: A list of testproblems.
:type testset: list

Tuner

The base class for all tuning methods in DeepOBS.

	
class deepobs.tuner.tuner.Tuner(optimizer_class, hyperparam_names, ressources, runner)

	The base class for all tuning methods in DeepOBS.

	
__init__(optimizer_class, hyperparam_names, ressources, runner)

	
	Parameters

	
	optimizer_class (framework optimizer class) -- The optimizer class of the optimizer that is run on the testproblems. For PyTorch this must be a subclass of torch.optim.Optimizer. For TensorFlow a subclass of tf.train.Optimizer.

	hyperparam_names (dict) -- A nested dictionary that lists all hyperparameters of the optimizer, their type and their default values (if they have any) in the form: {'<name>': {'type': <type>, 'default': <default value>}}, e.g. for torch.optim.SGD with momentum: {'lr': {'type': float}, 'momentum': {'type': float, 'default': 0.99}, 'uses_nesterov': {'type': bool, 'default': False}}

	ressources (int) -- The number of evaluations the tuner is allowed to perform on each testproblem.

	runner -- The DeepOBS runner that the tuner uses for evaluation.

	
tune(testproblem, *args, output_dir='./results', random_seed=42, rerun_best_setting=True, **kwargs)

	Tunes hyperparaneter of the optimizer_class on a testproblem.
:param testproblem: Testproblem for which to generate commands.
:type testproblem: str
:param output_dir: The output path where the execution results are written to.
:type output_dir: str
:param random_seed: The random seed for the tuning.
:type random_seed: int
:param rerun_best_setting: Whether to rerun the best setting with 10 different seeds.
:type rerun_best_setting: bool

	
tune_on_testset(testset, *args, **kwargs)

	Tunes the hyperparameter on a whole testset.
:param testset: A list of testproblems.
:type testset: list

Parallelized Tuner

	
class deepobs.tuner.tuner.ParallelizedTuner(optimizer_class, hyperparam_names, ressources, runner)

	Bases: deepobs.tuner.tuner.Tuner

The base class for all tuning methods which are uninformed and parallelizable, like Grid Search and Random Search.

	
generate_commands_script(testproblem, run_script, output_dir='./results', random_seed=42, generation_dir='./command_scripts', **kwargs)

	
	Parameters

	
	testproblem (str) -- Testproblem for which to generate commands.

	run_script (str) -- Name the run script that is used from the command line.

	output_dir (str) -- The output path where the execution results are written to.

	random_seed (int) -- The random seed for the tuning.

	generation_dir (str) -- The path to the directory where the generated scripts are written to.

	Returns

	The relative file path to the generated commands script.

	Return type

	str

	
generate_commands_script_for_testset(testset, *args, **kwargs)

	Generates command scripts for a whole testset.
:param testset: A list of the testproblem strings.
:type testset: list

	
tune(testproblem, output_dir='./results', random_seed=42, rerun_best_setting=False, **kwargs)

	Tunes the optimizer on the test problem.
:param testproblem: The test problem to tune the optimizer on.
:type testproblem: str
:param output_dir: The output directory for the results.
:type output_dir: str
:param random_seed: Random seed for the whole truning process. Every individual run is seeded by it.
:type random_seed: int
:param rerun_best_setting: Whether to automatically rerun the best setting with 10 different seeds.
:type rerun_best_setting: bool

	
tune_on_testset(testset, *args, **kwargs)

	Tunes the hyperparameter on a whole testset.
:param testset: A list of testproblems.
:type testset: list

Tuning Utilities

General Utilities

	
deepobs.tuner.tuner_utils.rerun_setting(runner, optimizer_class, hyperparam_names, optimizer_path, seeds=array([43, 44, 45, 46, 47, 48, 49, 50, 51]), rank=1, mode='final', metric='valid_accuracies')

	Reruns a hyperparameter setting with several seeds after the tuning is finished. Defaults to rerun the best setting.
:param runner: The runner which was used for the tuning.
:type runner: framework runner.runner
:param optimizer_class: The optimizer class that was tuned.
:type optimizer_class: framework optimizer class
:param hyperparam_names: A nested dictionary that holds the names, the types and the default values of the hyperparams.
:type hyperparam_names: dict
:param optimizer_path: The path to the optimizer to analyse the best setting on.
:type optimizer_path: str
:param seeds: The seeds that are used to rerun the setting.
:type seeds: iterable
:param rank: The ranking of the setting that is to rerun.
:type rank: int
:param mode: The mode by which to decide the best setting.
:type mode: str
:param metric: The metric by which to decide the best setting.
:type metric: str

	
deepobs.tuner.tuner_utils.write_tuning_summary(optimizer_path, mode='final', metric='valid_accuracies')

	Writes the tuning summary to a json file in the optimizer_path.
:param optimizer_path: Path to the optimizer folder.
:type optimizer_path: str
:param mode: The mode on which the performance measure for the summary is based.
:type mode: str
:param metric: The metric which is printed to the tuning summary as 'target'
:type metric: str

	
deepobs.tuner.tuner_utils.generate_tuning_summary(optimizer_path, mode='final', metric='valid_accuracies')

	Generates a list of dictionaries that holds an overview of the current tuning process.
Should not be used for Bayesian tuning methods, since the order of evaluation is ignored in this summary. For
Bayesian tuning methods use the tuning summary logging of the respective class.

	Parameters

	
	optimizer_path (str) -- Path to the optimizer folder.

	mode (str) -- The mode on which the performance measure for the summary is based.

	metric (str) -- The metric which is printed to the tuning summary as 'target'

	Returns

	A list of dictionaries. Each dictionary corresponds to one hyperparameter evaluation
of the tuning process and holds the hyperparameters and their performance.
setting_analyzer_ranking (list): A ranked list of SettingAnalyzers that were used to generate the summary

	Return type

	tuning_summary (list)

	
class deepobs.tuner.tuner_utils.log_uniform(a, b, base=10)

	A log uniform distribution that takes an arbitrary base.

	
__init__(a, b, base=10)

	
	Parameters

	
	a (float) -- Lower bound.

	b (float) -- Range from lower bound.

	base (float) -- Base of the log.

Bayesian Specific Utilities

	
deepobs.tuner.bayesian_utils.plot_1d_bo_posterior(optimizer_path, step, resolution, xscale='linear', show=True)

	Plots the one dimensional GP posterior of the Bayesian tuning process. The tuning process must have been done
for only one hyperparameter (i.e. one dimensional).
:param optimizer_path: Path to the optimizer which was tuned.
:type optimizer_path: str
:param step: The step of the tuning process for which the posterior is plotted.
:type step: int
:param resolution: Resolution of the plot, i.e. number of x-values.
:type resolution: int
:param xscale: The scaling for the x-axis.
:type xscale: str
:param show: Whether to show the plot or not.
:type show: bool

	Returns

	The figure and axes of the plot.

	Return type

	tuple

	
deepobs.tuner.bayesian_utils.plot_2d_bo_posterior(optimizer_path, step, resolution, show=True)

	Plots the two dimensional GP posterior of the Bayesian tuning process. The tuning process must have been done
for exactly two hyperparameters (i.e. two dimensional).
:param optimizer_path: Path to the optimizer which was tuned.
:type optimizer_path: str
:param step: The step of the tuning process for which the posterior is plotted.
:type step: int
:param resolution: Resolution of the plot, i.e. number of x-values.
:type resolution: int
:param show: Whether to show the plot or not.
:type show: bool

	Returns

	Figure and axes of the plot.

	Return type

	tuple

Scripts

DeepOBS includes a few convenience scripts that can be run directly from the
command line

	Prepare Data: Takes care of downloading and preprocessing all data sets
for DeepOBS.

	Get Baselines: Automatically downloads the baselines of DeepOBS.

	Plot Results: Quickly plots the suggested outputs of a optimizer benchmark.

Scripts

	Prepare Data

	Download Baselines

	Plot Results

Prepare Data

A convenience script to download all data sets for DeepOBS and preprocess them
so they are ready to be used with DeepOBS.

Note

Currently there is no data downloading and preprocessing mechanic implemented
for ImageNet. Downloading the ImageNet data set requires an account and
can take a lot of time to download. Additionally, it requires quite a large
amount of memory. The best way currently is to download and preprocess the
ImageNet data set separately if needed and move it into the DeepOBS data
folder.

The file will create a set of folders of the following structure:

data_deepobs

├── cifar10

│ ├── data_batch_1.bin

│ ├── data_batch_2.bin

│ └── ...

├── cifar100

│ ├── train.bin

│ ├── test.bin

│ └── ...

├── fmnist

│ ├── t10k-images-idx3-ubyte.gz

│ ├── t10k-labels-idx1-ubyte.gz

│ └── ...

├── mnist

│ ├── t10k-images-idx3-ubyte.gz

│ ├── t10k-labels-idx1-ubyte.gz

│ └── ...

├── svhn

│ ├── data_batch_0.bin

│ ├── data_batch_1.bin

│ └── ...

├── tolstoi

│ ├── train.npy

│ ├── test.npy

│ └── ...

├── imagenet

│ ├── train-00000-of-01024

│ ├── ...

│ ├── validation-00000-of-00128

│ └── ...

DeepOBS expects a structure like this, so if you already have (most of the) the
data sets already, you still need to bring it into this order.

Usage:

usage: deepobs_prepare_data.sh [--data_dir=DIR] [--skip SKIP] [--only ONLY]

Named Arguments

	-d --data_dir

	Path where the data sets should be saved. Defaults to the current folder.

	-s --skip

	Defines which data sets should be skipped. Argument needs to be one of the following mnist, fmnist, cifar10, cifar100, svhn, imagenet, tolstoi. You can use the --skip argument multiple times.

	-o --only

	Specify if only a single data set should be downloaded. Argument needs to be one of the following mnist, fmnist, cifar10, cifar100, svhn, imagenet, tolstoi. This overwrites the --skip argument and should can only be used once.

Download Baselines

A convenience script to download all baselines for DeepOBS.

Note

The download is currently around 470 MB large, so it might take a while,
depending on your internet connection.

The baselines are currently for the three most popular deep learning optimizers,
SGD, Momentum and Adam. The files include the JSON results for
both the hyperparameter tuning phase (36 runs with different learning rates)
as well as the final results with the best performing setting (10 runs with
different random seeds and the same hyperparameter setting).

They can be used together with the plotting module or script to automatically
compare the results of new optimizers, without having to run those baselines
again.

Usage:

usage: deepobs_get_baselines.sh [--data_dir=DIR]

Named Arguments

	-d --data_dir

	Path where the baselines should be saved. Defaults to "baselines_deepobs".

Plot Results

A convenience script to extract useful information out of the results create by
the runners.

This script can return one or all of the below information:

	Get best run: Returns the best hyperparameter setting for each optimizer in
each test problem.

	Plot learning rate sensitivity: Creates a plot for each test problem showing
the relative performance of each optimizer against the learning rate to get
a sense of how difficult the tuning process was.

	Plot performance: Creates a plot for the small and large benchmark
set, plotting (if available) all four performance metric (losses and
accuracies for both the test and the train data set) for each optimizer.

	Plot table: Creates the overall performance table for the small and
large benchmark set including metrics for the performance, speed and
tuneability of each optimizer on each test problem.

If the path to the baseline folder is given, this script will also plot the
performances of SGD, Momentum and Adam.

Usage:

Plotting tool for DeepOBS.

usage: deepobs_plot_results.py [-h] [--get_best_run] [--plot_lr_sensitivity]
 [--plot_performance] [--plot_table] [--full]
 [--baseline_path BASELINE_PATH]
 path

Positional Arguments

	path

	Path to the results folder

Named Arguments

	--get_best_run

	Return best hyperparameter setting per optimizer and testproblem.

Default: False

	--plot_lr_sensitivity

	Plot 'sensitivity' plot for the learning rates.

Default: False

	--plot_performance

	Plot performance plot compared to the baselines.

Default: False

	--plot_table

	Plot overall performance table including speed and hyperparameters.

Default: False

	--full

	Run a full analysis and plot all figures.

Default: False

	--baseline_path

	Path to baseline folder.

Default: "baselines_deepobs"

Config

The global DeepOBS config.

	
deepobs.config.get_testproblem_default_setting(testproblem)

	Returns default settings for the batch_size and the num_epochs for testproblem (if available).

	Parameters

	testproblem (str) -- Test problem for which to return the default setting.

	Returns

	A dictionary with the default values for batch_size and num_epochs

	Return type

	dict

	
deepobs.config.set_framework(framework)

	Sets the current used framework. This is relevant for the higher level Tuner module of DeepOBS.

	Parameters

	framework (str) -- Can be 'pytorch' or 'tensorflow'

	
deepobs.config.set_data_dir(data_dir)

	Sets the data directory.

	Parameters

	data_dir (str) -- Path to the data folder.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init__() (deepobs.pytorch.runners.LearningRateScheduleRunner method)

 	(deepobs.pytorch.runners.PTRunner method)

 	(deepobs.pytorch.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.LearningRateScheduleRunner method)

 	(deepobs.tensorflow.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.TFRunner method)

 	(deepobs.tuner.GP method)

 	(deepobs.tuner.GridSearch method)

 	(deepobs.tuner.RandomSearch method)

 	(deepobs.tuner.tuner.Tuner method)

 	(deepobs.tuner.tuner_utils.log_uniform method)

 	_batch_size (deepobs.pytorch.testproblems.TestProblem attribute)

 	_get_next_batch() (deepobs.pytorch.testproblems.TestProblem method)

 	
 	_l2_reg (deepobs.pytorch.testproblems.TestProblem attribute)

 	_make_dataloader() (deepobs.pytorch.datasets.cifar10.cifar10 method)

 	(deepobs.pytorch.datasets.cifar100.cifar100 method)

 	(deepobs.pytorch.datasets.mnist.mnist method)

 	_make_test_dataloader() (deepobs.pytorch.datasets.dataset.DataSet method)

 	_make_train_and_valid_dataloader() (deepobs.pytorch.datasets.dataset.DataSet method)

 	_make_train_eval_dataloader() (deepobs.pytorch.datasets.dataset.DataSet method)

 	_num_workers (deepobs.pytorch.datasets.dataset.DataSet attribute)

 	_pin_memory (deepobs.pytorch.datasets.dataset.DataSet attribute)

 	_quadratic_base (class in deepobs.tensorflow.testproblems._quadratic)

 	_test_dataloader (deepobs.pytorch.datasets.dataset.DataSet attribute)

 	_train_dataloader (deepobs.pytorch.datasets.dataset.DataSet attribute)

 	_train_eval_dataloader (deepobs.pytorch.datasets.dataset.DataSet attribute)

 	_valid_dataloader (deepobs.pytorch.datasets.dataset.DataSet attribute)

A

 	
 	accuracy (deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

B

 	
 	batch (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.quadratic.quadratic attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	(deepobs.tensorflow.datasets.tolstoi.tolstoi attribute)

 	(deepobs.tensorflow.datasets.two_d.two_d attribute)

C

 	
 	check_output() (in module deepobs.analyzer)

 	cifar10 (class in deepobs.pytorch.datasets.cifar10)

 	(class in deepobs.tensorflow.datasets.cifar10)

 	cifar100 (class in deepobs.pytorch.datasets.cifar100)

 	(class in deepobs.tensorflow.datasets.cifar100)

 	cifar100_3c3d (class in deepobs.pytorch.testproblems.cifar100_3c3d)

 	(class in deepobs.tensorflow.testproblems.cifar100_3c3d)

 	cifar100_allcnnc (class in deepobs.pytorch.testproblems.cifar100_allcnnc)

 	(class in deepobs.tensorflow.testproblems.cifar100_allcnnc)

 	cifar100_vgg16 (class in deepobs.tensorflow.testproblems.cifar100_vgg16)

 	cifar100_vgg19 (class in deepobs.tensorflow.testproblems.cifar100_vgg19)

 	
 	cifar100_wrn404 (class in deepobs.tensorflow.testproblems.cifar100_wrn404)

 	cifar10_3c3d (class in deepobs.pytorch.testproblems.cifar10_3c3d)

 	(class in deepobs.tensorflow.testproblems.cifar10_3c3d)

 	cifar10_vgg16 (class in deepobs.tensorflow.testproblems.cifar10_vgg16)

 	cifar10_vgg19 (class in deepobs.tensorflow.testproblems.cifar10_vgg19)

 	create_testproblem() (deepobs.pytorch.runners.LearningRateScheduleRunner static method)

 	(deepobs.pytorch.runners.PTRunner static method)

 	(deepobs.pytorch.runners.StandardRunner static method)

 	(deepobs.tensorflow.runners.LearningRateScheduleRunner static method)

 	(deepobs.tensorflow.runners.StandardRunner static method)

 	(deepobs.tensorflow.runners.TFRunner static method)

D

 	
 	data (deepobs.pytorch.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.pytorch.testproblems.TestProblem attribute)

 	(deepobs.pytorch.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.pytorch.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.pytorch.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.pytorch.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.pytorch.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.pytorch.testproblems.quadratic_deep.quadratic_deep attribute)

 	DataSet (class in deepobs.pytorch.datasets.dataset)

 	(class in deepobs.tensorflow.datasets.dataset)

 	dataset (deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

E

 	
 	estimate_runtime() (in module deepobs.analyzer)

 	evaluate() (deepobs.pytorch.runners.LearningRateScheduleRunner static method)

 	(deepobs.pytorch.runners.PTRunner static method)

 	(deepobs.pytorch.runners.StandardRunner static method)

 	(deepobs.tensorflow.runners.LearningRateScheduleRunner static method)

 	(deepobs.tensorflow.runners.StandardRunner static method)

 	(deepobs.tensorflow.runners.TFRunner static method)

F

 	
 	fmnist (class in deepobs.pytorch.datasets.fmnist)

 	(class in deepobs.tensorflow.datasets.fmnist)

 	fmnist_2c2d (class in deepobs.pytorch.testproblems.fmnist_2c2d)

 	(class in deepobs.tensorflow.testproblems.fmnist_2c2d)

 	
 	fmnist_logreg (class in deepobs.tensorflow.testproblems.fmnist_logreg)

 	fmnist_mlp (class in deepobs.pytorch.testproblems.fmnist_mlp)

 	(class in deepobs.tensorflow.testproblems.fmnist_mlp)

 	fmnist_vae (class in deepobs.pytorch.testproblems.fmnist_vae)

 	(class in deepobs.tensorflow.testproblems.fmnist_vae)

G

 	
 	generate_commands_script() (deepobs.tuner.GridSearch method)

 	(deepobs.tuner.RandomSearch method)

 	(deepobs.tuner.tuner.ParallelizedTuner method)

 	generate_commands_script_for_testset() (deepobs.tuner.GridSearch method)

 	(deepobs.tuner.RandomSearch method)

 	(deepobs.tuner.tuner.ParallelizedTuner method)

 	generate_tuning_summary() (in module deepobs.tuner.tuner_utils)

 	get_batch_loss_and_accuracy() (deepobs.pytorch.testproblems.TestProblem method), [1]

 	get_batch_loss_and_accuracy_func() (deepobs.pytorch.testproblems.fmnist_vae.fmnist_vae method)

 	(deepobs.pytorch.testproblems.TestProblem method)

 	(deepobs.pytorch.testproblems.mnist_vae.mnist_vae method)

 	(deepobs.pytorch.testproblems.quadratic_deep.quadratic_deep method)

 	
 	get_performance_dictionary() (in module deepobs.analyzer)

 	get_regularization_groups() (deepobs.pytorch.testproblems.cifar100_3c3d.cifar100_3c3d method)

 	(deepobs.pytorch.testproblems.TestProblem method)

 	(deepobs.pytorch.testproblems.cifar100_allcnnc.cifar100_allcnnc method)

 	(deepobs.pytorch.testproblems.cifar10_3c3d.cifar10_3c3d method)

 	(deepobs.pytorch.testproblems.svhn_wrn164.svhn_wrn164 method)

 	get_regularization_loss() (deepobs.pytorch.testproblems.cifar100_3c3d.cifar100_3c3d method)

 	(deepobs.pytorch.testproblems.TestProblem method)

 	(deepobs.pytorch.testproblems.cifar10_3c3d.cifar10_3c3d method)

 	get_testproblem_default_setting() (in module deepobs.config)

 	GP (class in deepobs.tuner)

 	GridSearch (class in deepobs.tuner)

I

 	
 	imagenet (class in deepobs.tensorflow.datasets.imagenet)

 	imagenet_inception_v3 (class in deepobs.tensorflow.testproblems.imagenet_inception_v3)

 	imagenet_vgg16 (class in deepobs.tensorflow.testproblems.imagenet_vgg16)

 	
 	imagenet_vgg19 (class in deepobs.tensorflow.testproblems.imagenet_vgg19)

 	init_summary() (deepobs.tensorflow.runners.LearningRateScheduleRunner static method)

 	(deepobs.tensorflow.runners.StandardRunner static method)

 	(deepobs.tensorflow.runners.TFRunner static method)

L

 	
 	LearningRateScheduleRunner (class in deepobs.pytorch.runners)

 	(class in deepobs.tensorflow.runners)

 	log_uniform (class in deepobs.tuner.tuner_utils)

 	loss_function (deepobs.pytorch.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.pytorch.testproblems.TestProblem attribute)

 	(deepobs.pytorch.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.pytorch.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.pytorch.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.pytorch.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.pytorch.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.pytorch.testproblems.quadratic_deep.quadratic_deep attribute)

 	losses (deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

M

 	
 	mnist (class in deepobs.pytorch.datasets.mnist)

 	(class in deepobs.tensorflow.datasets.mnist)

 	mnist_2c2d (class in deepobs.pytorch.testproblems.mnist_2c2d)

 	(class in deepobs.tensorflow.testproblems.mnist_2c2d)

 	
 	mnist_logreg (class in deepobs.tensorflow.testproblems.mnist_logreg)

 	mnist_mlp (class in deepobs.pytorch.testproblems.mnist_mlp)

 	(class in deepobs.tensorflow.testproblems.mnist_mlp)

 	mnist_vae (class in deepobs.pytorch.testproblems.mnist_vae)

 	(class in deepobs.tensorflow.testproblems.mnist_vae)

N

 	
 	net (deepobs.pytorch.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.pytorch.testproblems.TestProblem attribute)

 	(deepobs.pytorch.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.pytorch.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.pytorch.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.pytorch.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.pytorch.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.pytorch.testproblems.quadratic_deep.quadratic_deep attribute)

 	
 	net_quadratic_deep (class in deepobs.pytorch.testproblems.testproblems_modules)

P

 	
 	ParallelizedTuner (class in deepobs.tuner.tuner)

 	parse_args() (deepobs.pytorch.runners.LearningRateScheduleRunner method)

 	(deepobs.pytorch.runners.PTRunner method)

 	(deepobs.pytorch.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.LearningRateScheduleRunner method)

 	(deepobs.tensorflow.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.TFRunner method)

 	phase (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.quadratic.quadratic attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	(deepobs.tensorflow.datasets.tolstoi.tolstoi attribute)

 	(deepobs.tensorflow.datasets.two_d.two_d attribute)

 	
 	plot_1d_bo_posterior() (in module deepobs.tuner.bayesian_utils)

 	plot_2d_bo_posterior() (in module deepobs.tuner.bayesian_utils)

 	plot_hyperparameter_sensitivity() (in module deepobs.analyzer)

 	plot_optimizer_performance() (in module deepobs.analyzer)

 	plot_results_table() (in module deepobs.analyzer)

 	plot_testset_performances() (in module deepobs.analyzer)

 	PTRunner (class in deepobs.pytorch.runners)

Q

 	
 	quadratic (class in deepobs.pytorch.datasets.quadratic)

 	(class in deepobs.tensorflow.datasets.quadratic)

 	
 	quadratic_deep (class in deepobs.pytorch.testproblems.quadratic_deep)

 	(class in deepobs.tensorflow.testproblems.quadratic_deep)

R

 	
 	RandomSearch (class in deepobs.tuner)

 	regularizer (deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

 	
 	rerun_setting() (in module deepobs.tuner.tuner_utils)

 	run() (deepobs.pytorch.runners.LearningRateScheduleRunner method)

 	(deepobs.pytorch.runners.PTRunner method)

 	(deepobs.pytorch.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.LearningRateScheduleRunner method)

 	(deepobs.tensorflow.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.TFRunner method)

 	run_exists() (deepobs.pytorch.runners.LearningRateScheduleRunner method)

 	(deepobs.pytorch.runners.PTRunner method)

 	(deepobs.pytorch.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.LearningRateScheduleRunner method)

 	(deepobs.tensorflow.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.TFRunner method)

S

 	
 	set_data_dir() (in module deepobs.config)

 	set_default_device() (in module deepobs.pytorch.config)

 	set_float_dtype() (in module deepobs.tensorflow.config)

 	set_framework() (in module deepobs.config)

 	set_is_deterministic() (in module deepobs.pytorch.config)

 	set_num_workers() (in module deepobs.pytorch.config)

 	set_up() (deepobs.pytorch.testproblems.cifar100_3c3d.cifar100_3c3d method)

 	(deepobs.pytorch.testproblems.TestProblem method), [1]

 	(deepobs.pytorch.testproblems.cifar100_allcnnc.cifar100_allcnnc method)

 	(deepobs.pytorch.testproblems.cifar10_3c3d.cifar10_3c3d method)

 	(deepobs.pytorch.testproblems.fmnist_2c2d.fmnist_2c2d method)

 	(deepobs.pytorch.testproblems.fmnist_mlp.fmnist_mlp method)

 	(deepobs.pytorch.testproblems.fmnist_vae.fmnist_vae method)

 	(deepobs.pytorch.testproblems.mnist_2c2d.mnist_2c2d method)

 	(deepobs.pytorch.testproblems.mnist_mlp.mnist_mlp method)

 	(deepobs.pytorch.testproblems.mnist_vae.mnist_vae method)

 	(deepobs.pytorch.testproblems.quadratic_deep.quadratic_deep method)

 	(deepobs.pytorch.testproblems.svhn_wrn164.svhn_wrn164 method)

 	(deepobs.tensorflow.testproblems._quadratic._quadratic_base method)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d method)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc method)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 method)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 method)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 method)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d method)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 method)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 method)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d method)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg method)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp method)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae method)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 method)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 method)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 method)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d method)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg method)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp method)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae method)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d method)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 method)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem method)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn method)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale method)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin method)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock method)

 	
 	StandardRunner (class in deepobs.pytorch.runners)

 	(class in deepobs.tensorflow.runners)

 	svhn (class in deepobs.pytorch.datasets.svhn)

 	(class in deepobs.tensorflow.datasets.svhn)

 	svhn_3c3d (class in deepobs.tensorflow.testproblems.svhn_3c3d)

 	svhn_wrn164 (class in deepobs.pytorch.testproblems.svhn_wrn164)

 	(class in deepobs.tensorflow.testproblems.svhn_wrn164)

T

 	
 	test_init_op (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.quadratic.quadratic attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	(deepobs.tensorflow.datasets.tolstoi.tolstoi attribute)

 	(deepobs.tensorflow.datasets.two_d.two_d attribute)

 	(deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

 	test_init_op() (deepobs.pytorch.testproblems.TestProblem method), [1]

 	TestProblem (class in deepobs.pytorch.testproblems)

 	(class in deepobs.tensorflow.testproblems.testproblem)

 	TFRunner (class in deepobs.tensorflow.runners)

 	tolstoi (class in deepobs.pytorch.datasets.tolstoi)

 	(class in deepobs.tensorflow.datasets.tolstoi)

 	tolstoi_char_rnn (class in deepobs.tensorflow.testproblems.tolstoi_char_rnn)

 	train_eval_init_op (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.quadratic.quadratic attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	(deepobs.tensorflow.datasets.tolstoi.tolstoi attribute)

 	(deepobs.tensorflow.datasets.two_d.two_d attribute)

 	(deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

 	
 	train_eval_init_op() (deepobs.pytorch.testproblems.TestProblem method), [1]

 	train_init_op (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.quadratic.quadratic attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	(deepobs.tensorflow.datasets.tolstoi.tolstoi attribute)

 	(deepobs.tensorflow.datasets.two_d.two_d attribute)

 	(deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

 	train_init_op() (deepobs.pytorch.testproblems.TestProblem method), [1]

 	training() (deepobs.pytorch.runners.LearningRateScheduleRunner method)

 	(deepobs.pytorch.runners.PTRunner method)

 	(deepobs.pytorch.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.LearningRateScheduleRunner method)

 	(deepobs.tensorflow.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.TFRunner method)

 	tune() (deepobs.tuner.GP method)

 	(deepobs.tuner.GridSearch method)

 	(deepobs.tuner.RandomSearch method)

 	(deepobs.tuner.tuner.ParallelizedTuner method)

 	(deepobs.tuner.tuner.Tuner method)

 	tune_on_testset() (deepobs.tuner.GP method)

 	(deepobs.tuner.GridSearch method)

 	(deepobs.tuner.RandomSearch method)

 	(deepobs.tuner.tuner.ParallelizedTuner method)

 	(deepobs.tuner.tuner.Tuner method)

 	Tuner (class in deepobs.tuner.tuner)

 	two_d (class in deepobs.tensorflow.datasets.two_d)

 	two_d_beale (class in deepobs.tensorflow.testproblems.two_d_beale)

 	two_d_branin (class in deepobs.tensorflow.testproblems.two_d_branin)

 	two_d_rosenbrock (class in deepobs.tensorflow.testproblems.two_d_rosenbrock)

V

 	
 	valid_init_op (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	
 	valid_init_op() (deepobs.pytorch.testproblems.TestProblem method)

W

 	
 	write_output() (deepobs.pytorch.runners.LearningRateScheduleRunner method)

 	(deepobs.pytorch.runners.PTRunner method)

 	(deepobs.pytorch.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.LearningRateScheduleRunner method)

 	(deepobs.tensorflow.runners.StandardRunner method)

 	(deepobs.tensorflow.runners.TFRunner method)

 	
 	write_per_epoch_summary() (deepobs.tensorflow.runners.LearningRateScheduleRunner static method)

 	(deepobs.tensorflow.runners.StandardRunner static method)

 	(deepobs.tensorflow.runners.TFRunner static method)

 	write_per_iter_summary() (deepobs.tensorflow.runners.LearningRateScheduleRunner static method)

 	(deepobs.tensorflow.runners.StandardRunner static method)

 	(deepobs.tensorflow.runners.TFRunner static method)

 	write_tuning_summary() (in module deepobs.tuner.tuner_utils)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to DeepOBS

 		
 Quick Start

 		
 Installation

 		
 Set-Up Data Sets

 		
 Contributing to DeepOBS

 		
 Simple Example

 		
 Create new Run Script

 		
 Run new Optimizer

 		
 Analyzing the Runs

 		
 Overview

 		
 Data Downloading

 		
 Data Loading

 		
 Model Loading

 		
 Runners

 		
 Baseline Results

 		
 Runtime Estimation

 		
 Visualization

 		
 Suggested Protocol

 		
 Decide for a Framework

 		
 Create new Run Script

 		
 (Possibly) Write Your Own Runner

 		
 Identify Tunable Hyperparameters

 		
 Decide for a Tuning Method

 		
 Specify the Tuning Domain

 		
 Bound the Tuning Resources

 		
 Report Stochasticity

 		
 Run on a Variety of Test Problems

 		
 Plot Results

 		
 Report Measures for Speed

 		
 How to Write Customized Runner

 		
 Decide for a Framework

 		
 Implement the Training Loop

 		
 Read in Hyperparameters and Training Parameters from the Command Line

 		
 Specify How the Hyperparameters and Training Parameters Should Be Added to the Run Name

 		
 Tuning Automation

 		
 Grid Search

 		
 Random Search

 		
 Bayesian Optimization (GP)

 		
 Analyzer

 		
 Validate Output

 		
 Plot Optimizer Performances

 		
 Get the Best Runs

 		
 Plot Hyperparameter Sensitivity

 		
 Estimate Runtime

 		
 TensorFlow

 		
 Data Sets

 		
 2D Data Set

 		
 Quadratic Data Set

 		
 MNIST Data Set

 		
 FMNIST Data Set

 		
 CIFAR-10 Data Set

 		
 CIFAR-100 Data Set

 		
 SVHN Data Set

 		
 ImageNet Data Set

 		
 Tolstoi Data Set

 		
 Test Problems

 		
 2D Test Problems

 		
 Quadratic Test Problems

 		
 MNIST Test Problems

 		
 Fashion-MNIST Test Problems

 		
 CIFAR-10 Test Problems

 		
 CIFAR-100 Test Problems

 		
 SVHN Test Problems

 		
 ImageNet Test Problems

 		
 Tolstoi Test Problems

 		
 Runner

 		
 TF Runner

 		
 Standard Runner

 		
 Learning Rate Schedule Runner

 		
 Config

 		
 PyTorch

 		
 Data Sets

 		
 Quadratic Data Set

 		
 MNIST Data Set

 		
 FMNIST Data Set

 		
 CIFAR-10 Data Set

 		
 CIFAR-100 Data Set

 		
 SVHN Data Set

 		
 Tolstoi Data Set

 		
 Test Problems

 		
 Quadratic Test Problems

 		
 MNIST Test Problems

 		
 Fashion-MNIST Test Problems

 		
 CIFAR-10 Test Problems

 		
 CIFAR-100 Test Problems

 		
 SVHN Test Problems

 		
 Runner

 		
 PT Runner

 		
 Standard Runner

 		
 Learning Rate Schedule Runner

 		
 Config

 		
 Tuner

 		
 Grid Search

 		
 Random Search

 		
 Gaussian Process

 		
 Tuner

 		
 Parallelized Tuner

 		
 Tuning Utilities

 		
 General Utilities

 		
 Bayesian Specific Utilities

 		
 Scripts

 		
 Prepare Data

 		
 Named Arguments

 		
 Download Baselines

 		
 Named Arguments

 		
 Plot Results

 		
 Positional Arguments

 		
 Named Arguments

 		
 Config

_static/up-pressed.png

_static/up.png

_images/stack.png
 tex files of learn-
ing curves for new

Visualization izer and the

Performances re-
sulis of the most
popular optimizers.

Runners

cific test problem.

Losses and ac-
curacy of a deep
learning model.

Pre-processed and
batched data.

Data Loading

Data Downloading

_static/ajax-loader.gif

_images/deepobs.jpg
Test

Train

Loss

Loss

70
45
20
70
45
20

P5 F-MNIST - VAE

0 20 40 60 &80 100
>
Epochs 8
7 8
&<
=
2
£ 3
<
£ 2

P6 CIFAR 100 - AllCNN C

"SRt

M
e
e

2.6
2.3
2.0
2.3
2.0
1.7
0.62
0.57
0.52
0.75
0.65
0.55

100

200
Epochs

300

P7 SVHN - Wide ResNet 16-4

0.45
0.35
0.25
0.25
0.15
0.05
0.96
0.95
0.94

1.00 —

0.99
0.98

50

|
100

Epochs

|
150

1.30
1.25
1.20
1.25
1.20
1.15
0.62
0.61
0.60
0.64
0.63
0.62

P8 Tolstoi - Char RNN

100
Epochs

150 200

_images/deepobs_banner.png
DeepOW

_images/DeepOBS_Data_Sets1.png
_ Train Set Test Set

Shuffle Filenames

Validation

Data Augmentation

Per Image
Standardization

Shuffle Data

Batch

_ Train Eval PValidation

_images/ImageNetOutput.png
malamute, malemute, Alaskan malamute
" i q

canoe

beacon, lighthouse, beacon light, pharos

Crock Pot

.

dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk waffle iron

lighter, light, igniter, ignitor

marmoset

imagenet (train)

espresso maker

switch, electric switch, electrical switch
>

speedboat

sorrel

caldron, cauldron

wooden spoon

scabbard

stingray

tricycle, trike, velocipede

sea cucumber, holothurian

albatross, mollymawk

_images/DeepOBS_Data_Sets.png
_ Train Set Test Set

Shuffle Filenames

Validation

Data Augmentation

Per Image
Standardization

Shuffle Data

Batch

_ Train Eval PValidation

