

Welcome to DeepOBS

[image: _images/deepobs_banner.png]

DeepOBS is a benchmarking suite that drastically simplifies, automates and
improves the evaluation of deep learning optimizers.

It can evaluate the performance of new optimizers on a variety of
real-world test problems and automatically compare them with
realistic baselines.

DeepOBS automates several steps when benchmarking deep learning optimizers:

	Downloading and preparing data sets.

	Setting up test problems consisting of contemporary data sets and realistic
deep learning architectures.

	Running the optimizers on multiple test problems and logging relevant
metrics.

	Reporting and visualization the results of the optimizer benchmark.

[image: _images/deepobs.jpg]

The code for the current implementation working with TensorFlow can be found
on GitHub [https://github.com/fsschneider/DeepOBS].

We are actively working on a PyTorch version and will be releasing it in the
next months. In the meantime, PyTorch users can still use parts of DeepOBS such
as the data preprocessing scripts or the visualization features.

User Guide

	Quick Start
	Installation

	Set-Up Data Sets

	Contributing to DeepOBS

	Overview
	Data Downloading

	Data Loading

	Model Loading

	Runners

	Baseline Results

	Runtime Estimation

	Visualization

	Simple Example
	Create new Run Script

	Run new Optimizer

	Get best Run

	Plot Results

	Suggested Protocol
	Create new Run Script

	Hyperparameter Search

	Repeated Runs with best Setting

	Plot Results

API Reference

	Data Sets
	2D Data Set

	Quadratic Data Set

	MNIST Data Set

	FMNIST Data Set

	CIFAR-10 Data Set

	CIFAR-100 Data Set

	SVHN Data Set

	ImageNet Data Set

	Tolstoi Data Set

	Test Problems
	2D Test Problems

	Quadratic Test Problems

	MNIST Test Problems

	Fashion-MNIST Test Problems

	CIFAR-10 Test Problems

	CIFAR-100 Test Problems

	SVHN Test Problems

	ImageNet Test Problems

	Tolstoi Test Problems

	Runner
	Standard Runner

	Analyzer
	Analyzer

	Test Problem Analyzer

	Optimizer Analyzer

	Setting Analyzer

	Aggregate Run

	Scripts
	Prepare Data

	Estimate Runtime

	Plot Results

Indices and tables

	Index

	Search Page

Quick Start

DeepOBS is a Python package to benchmark deep learning optimizers.
It currently supports TensorFlow but a PyTorch version is currently in
development.

We tested the package with Python 3.6 and TensorFlow version 1.12.
Other versions of Python and TensorFlow (>= 1.4.0) might work, and we plan to
expand compatibility in the future.

Installation

You can install the latest stable release of DeepOBS using pip:

pip install git+https://github.com/fsschneider/DeepOBS.git

Note

The package requires the following packages:

	argparse

	numpy

	pandas

	matplotlib

	matplotlib2tikz

	seaborn

TensorFlow is not a required package to allow for both the CPU and GPU version.
Make sure that one of those is installed.

Hint

We do not specify the exact version of the required package. However, if any
problems occur while using DeepOBS, it might be a good idea to upgrade those
packages to the newest release (especially matplotlib and numpy).

Set-Up Data Sets

After installing DeepOBS, you have to download the data sets for the test
problems. This can be done by simply running the
Prepare Data script:

deepobs_prepare_data.sh

This will automatically download, sort and prepare all the data sets
(except ImageNet) in a folder called data_deepobs in the current directory.
It can take a while, as it will download roughly 1 GB.

Note

The ImageNet data set is currently excluded from this automatic downloading
and preprocessing. ImageNet requires a registration to do this and has a total
size of hundreds of GBs. You can download it and add it to the imagenet
folder by yourself if you wish to use the ImageNet data set.

Hint

If you already have some of the data sets on your computer, you can only
download the rest. If you have all data sets, you can skip this step, and
always tell DeepOBS where the data sets are located. However, the DeepOBS
package requires the data sets to be organized in a specific way.

You are now ready to run different optimizers on various test problems. We
provide a Simple Example for this, as well as our
Suggested Protocol for benchmarking deep learning optimizers.

Contributing to DeepOBS

If you want to see a certain data set or test problem added to DeepOBS, you
can just fork DeepOBS, and implemented following the structure of the existing
modules and create a pull-request. We are very happy to expand DeepOBS with
more data sets and models.

We also invite the authors of other optimization algorithms to add their own
method to the benchmark. Just edit a run script to include the new optimization
method and create a pull-request.

Provided that this new optimizer produces competitive results, we will add the
results to the set of provided baselines.

Overview

DeepOBS provides modules and scripts for the full stack required to rapidly,
reliably and reproducibly benchmark deep learning optimizers.

Here we briefly described the different levels of automation that DeepOBS
provides. While, they are built hierarchically, they can be used separately.
For example, one can use just the data loading capabilities of DeepOBS and built
a new test problem on top of it.

A more detailed description of the modules and scripts can be found in the API
reference section.

[image: ../_images/stack.png]

Data Downloading

DeepOBS can automatically download and pre-process all necessary data sets.
This includes

	MNIST [http://yann.lecun.com/exdb/mnist/]

	Fashion-MNIST (FMNIST) [https://github.com/zalandoresearch/fashion-mnist]

	CIFAR-10 [https://www.cs.toronto.edu/~kriz/cifar.html]

	CIFAR-100 [https://www.cs.toronto.edu/~kriz/cifar.html]

	Street View House Numbers (SVHN) [http://ufldl.stanford.edu/housenumbers/]

	Leo Tolstoi's War and Peace

Note

While ImageNet [http://www.image-net.org/] is part of DeepOBS, it is
currently not part of the automatic data downloading pipeline mechanic.
Downloading the ImageNet data set requires an account and can take a lot
of time to download. Additonally, it requires quite a large amount of memory.
The best way currently is to download and preprocess the ImageNet data set
separately if needed and move it into the DeepOBS data folder.

The automatic data preparation script can be run using

deepobs_prepare_data.sh

and is described in the API section under
Prepare Data.

Data Loading

The DeepOBS data loading module then performs all necessary processing of the
data sets to return inputs and outputs for the deep learning model (e.g. images
and labels for image classification). This processing includes splitting,
shuffling, batching and data augmentation. The data loading module can also be
used to build new deep learning models that are not (yet) part of DeepOBS.

The outputs of the data loading module is illustrated in the figure below and is
further described in the API section under Data Sets.

[image: ../_images/ImageNetOutput.png]

Model Loading

Together, data set and model define a loss function and thus an optimization
problem. We selected problems for diversity of task as well as the difficulty of
the optimization problem itself. The list of test problems of DeepOBS includes
popular image classification models on data sets like MNIST, CIFAR-10 or
ImageNet, but also models for natural language processing and generative
models.

Additionally, three two-dimensional problems and an ill-conditioned quadratic
problem are included. These simple tests can be used as illustrative toy
problems to highlight properties of an algorithm and perform sanity-checks.

Over time, we plan to expand this list when hardware and research progress
renders small problems out of date, and introduces new research directions and
more challenging problems.

The implementation of the models is described in the API section under
Test Problems.

Runners

The runners of the DeepOBS package handle training and the logging of statistics
measuring the optimizer's performance. For optimizers following the standard
TensorFlow optimizer API it is enough to provide the runners with a list of the
optimizer’s hyperparameters. We provide a template for this, as well as an
example of including a more sophisticated optimizer that can’t be described as
a subclass of the TensorFlow optimizer API.

In the API section, we described the Standard Runner and in
the Simple Example we show an example of creating a run script for a new
optimizer.

Baseline Results

DeepOBS also provides realistic baselines results for, currently, the three most
popular optimizers in deep learning, SGD, Momentum, and Adam.
These allow comparing a newly developed algorithm to the competition without
computational overhead, and without risk of conscious or unconscious bias
against the competition.

Baselines for further optimizers will be added when authors provide the
optimizer’s code, assuming the method perform competitively. Currently,
baselines are available for all test problems in the small and large benchmark
set.

Runtime Estimation

DeepOBS provides an option to quickly estimate the runtime overhead of a new
optimization method compared to SGD. It measures the ratio of wall-clock
time between the new optimizer and SGD.

By default this ratio is measured on five runs each, for three epochs, on a
fully connected network on MNIST. However, this can be adapted to a setting
which fairly evaluates the new optimizer, as some optimizers might have a high
initial cost that amortizes over many epochs.

The Estimate Runtime script is described in the
API section.

Visualization

The DeepOBS visualization module reduces the overhead for the preparation of
results, and simultaneously standardizes the presentation, making it possible to
include a comparably large amount of information in limited space.

The module produces .tex files with pgfplots-code for all learning curves for
the proposed optimizer as well as the most relevant baselines. This also
includes a plot showing the learning rate sensitivity. An example plot is
shown below, a more comprehensive example can be seen in section 4 of the
DeepOBS [https://openreview.net/forum?id=rJg6ssC5Y7] paper.

[image: ../_images/deepobs1.jpg]
The Plot Results script is described in the
API section, as well as the lower-level functions it is relying on.

Simple Example

This tutorial will show you an example of how DeepOBS can be used to benchmark
the performance of a new optimization method for deep learning.

This simple example aims to show you some basic functions of DeepOBS, by
creating a run script for a new optimizer (we will use the Momentum optimizer
as an example here) and running it on a very simple test problem.

Create new Run Script

The easiest way to use DeepOBS with a new optimizer is to write a run script for
it. This run script will import the optimizer and list its hyperparameters
(other than the learning rate). For the Momentum optimizer this is simply

momentum_runner.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	import tensorflow as tf
import deepobs.tensorflow as tfobs

optimizer_class = tf.train.MomentumOptimizer
hyperparams = [{"name": "momentum", "type": float},
 {"name": "use_nesterov", "type": bool, "default": False }]
runner = tfobs.runners.StandardRunner(optimizer_class, hyperparams)

The run method accepts all the relevant inputs, all arguments that are not
provided will automatically be grabbed from the command line.
runner.run(train_log_interval=10)

You can download this example run script and use it as a template.

The DeepOBS runner (Line 7) needs access to an optimizer class with the same API
as the TensorFlow optimizers and a list of additional hyperparameters for this
new optimizers.

This run script is now fully command line based and is able to access all the
test problems (and other options) of DeepOBS while also allowing to specify the
new optimizers hyperparameters.

Run new Optimizer

Assuming the run script (from the previous section) is called
momentum_runner.py we can use it to run the Momentum optimizer on one of the
test problems on DeepOBS:

python momentum_runner.py quadratic_deep --bs 128 --lr 1e-2 --momentum 0.99 --num_epochs 10

We will run it a couple times more this time with different learning_rates

python momentum_runner.py quadratic_deep --bs 128 --lr 1e-3 --momentum 0.99 --num_epochs 10
python momentum_runner.py quadratic_deep --bs 128 --lr 1e-4 --momentum 0.99 --num_epochs 10
python momentum_runner.py quadratic_deep --bs 128 --lr 1e-5 --momentum 0.99 --num_epochs 10

Get best Run

We can use DeepOBS to automatically find the best of the hyperparameter
settings.

In this example we will directly access the (lower-level) functions of DeepOBS.
In the section Suggested Protocol we show you how to use the convenience
scripts to do the following steps automatically.

import deepobs

analyzer = deepobs.analyzer.analyze_utils.Analyzer("results")
deepobs.analyzer.analyze.get_best_run(analyzer)

Since all of our results from the previous section are stored in the results
folder, we pass this path to the DeepOBS Analyzer. Next,
we can call the get_best_run function with this analyzer and get an output
like this

Analyzing quadratic_deep

Checked 4 settings for MomentumOptimizer and found the following
Best Setting (Final Value) num_epochs__10__batch_size__10__momentum__9.9e-01__use_nesterov__False__lr__1.e-04 with final performance of 115.23509434291294
Best Setting (Best Value) num_epochs__10__batch_size__10__momentum__9.9e-01__use_nesterov__False__lr__1.e-03 with best performance of 111.36394282749721

Plot Results

Similarly, we can plot the sensitivity of the (final) performance with regard to
the learning rate by calling the appropriate DeepOBS function

deepobs.analyzer.analyze.plot_lr_sensitivity(analyzer)

and getting a plot like this

[image: ../_images/plot_lr_sensitivity.png]
And most importantly, a performance plot of the best performing hyperparameter
setting (when looking at the final performance)

deepobs.analyzer.analyze.plot_performance(analyzer, mode='final')

[image: ../_images/plot_performance.png]

Suggested Protocol

Here we provide a suggested protocol for more rigorously benchmarking deep
learning optimizer. It follows the same steps as the baseline results presented
in the DeepOBS [https://openreview.net/forum?id=rJg6ssC5Y7] paper

Create new Run Script

In order to benchmark a new optimization method a new run script has to be
written. A more detailed description can be found in the Simple Example and
the the API section for the Standard Runner, but all is
needed is the optimizer itself and a list of its hyperparameters. For example
for the Momentum optimizer this will be.

	1
2
3
4
5
6
7
8
9

	import tensorflow as tf
import deepobs.tensorflow as tfobs

optimizer_class = tf.train.MomentumOptimizer
hyperparams = [{"name": "momentum", "type": float},
 {"name": "use_nesterov", "type": bool, "default": False }]
runner = tfobs.runners.StandardRunner(optimizer_class, hyperparams)

runner.run(train_log_interval=10)

Hyperparameter Search

Once the optimizer has been defined it is recommended to do a hyperparameter
search for each test problem. For optimizers with only the learning rate as
a free parameter a simple grid search can be done.

For the baselines, we tuned the learning rate for each optimizer and test
problem individually, by evaluating on a logarithmic grid from 10e−5
to 10e2 with 36 samples. If the same tuning method is used for a new
optimizer no re-running of the baselines is needed saving valuable
computational budget.

Repeated Runs with best Setting

In order to get a sense of the optimziers consistency, we suggest repeating
runs with the best hyperparameter setting multiple times. This allows an
assessment of the variance of the optimizer's performance.

For the baselines we determined the best learning rate looking at the final
performance of each run, which can be done using

deepobs_plot_results results/ --get_best_run

and then running the best performing setting again using ten different random
seeds.

Plot Results

To visualize the final results it is sufficient to run

deepobs_plot_results results/ --full

This will show the performance plots for the small and large benchmark
set

[image: ../_images/performance_plot.png]
as well as the learning rate sensitivity plot

[image: ../_images/lr_sensitivity.png]
and the overall performance table

[image: ../_images/performance_table.png]
For all plots, .tex files will be generated with pgfplots-code for direct
inclusion in academic publications.

Data Sets

Currently DeepOBS includes nine different data sets. Each data set inherits from
the same base class with the following signature.

	
class deepobs.tensorflow.datasets.dataset.DataSet(batch_size)

	Base class for DeepOBS data sets.

	Parameters

	batch_size (int) -- The mini-batch size to use.

	
batch

	A tuple of tensors, yielding batches of data from the dataset.
Executing these tensors raises a tf.errors.OutOfRangeError after one
epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

Data Sets

	2D Data Set

	Quadratic Data Set

	MNIST Data Set

	FMNIST Data Set

	CIFAR-10 Data Set

	CIFAR-100 Data Set

	SVHN Data Set

	ImageNet Data Set

	Tolstoi Data Set

2D Data Set

	
class deepobs.tensorflow.datasets.two_d.two_d(batch_size, train_size=10000, noise_level=1.0)

	DeepOBS data set class to create two dimensional stochastic testproblems.

This toy data set consists of a fixed number (train_size) of iid draws
from two scalar zero-mean normal distributions with standard deviation
specified by the noise_level.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (1000 for train and test) the
remainder is dropped in each epoch (after shuffling).

	train_size (int) -- Size of the training data set. This will also be used as
the train_eval and test set size. Defaults to 1000.

	noise_level (float) -- Standard deviation of the data points around the mean.
The data points are drawn from a Gaussian distribution. Defaults to
1.0.

	
batch

	A tuple (x, y) of tensors with random x and y that can be used to
create a noisy two dimensional testproblem. Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to "train", "train_eval" or
"test", depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

Quadratic Data Set

	
class deepobs.tensorflow.datasets.quadratic.quadratic(batch_size, dim=100, train_size=1000, noise_level=0.6)

	DeepOBS data set class to create an n dimensional stochastic quadratic testproblem.

This toy data set consists of a fixed number (train_size) of iid draws
from a zero-mean normal distribution in dim dimensions with isotropic
covariance specified by noise_level.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (1000 for train and test) the
remainder is dropped in each epoch (after shuffling).

	dim (int) -- Dimensionality of the quadratic. Defaults to 100.

	train_size (int) -- Size of the dataset; will be used for train, train eval and
test datasets. Defaults to 1000.

	noise_level (float) -- Standard deviation of the data points around the mean.
The data points are drawn from a Gaussian distribution.
Defaults to 0.6.

	
batch

	A tensor X of shape (batch_size, dim) yielding elements from
the dataset. Executing these tensors raises a tf.errors.OutOfRangeError
after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

MNIST Data Set

	
class deepobs.tensorflow.datasets.mnist.mnist(batch_size, train_eval_size=10000)

	DeepOBS data set class for the MNIST [http://yann.lecun.com/exdb/mnist/] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (60 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of MNIST images
(x with shape (batch_size, 28, 28, 1)) and corresponding one-hot
label vectors (y with shape (batch_size, 10)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

FMNIST Data Set

	
class deepobs.tensorflow.datasets.fmnist.fmnist(batch_size, train_eval_size=10000)

	DeepOBS data set class for the Fashion-MNIST (FMNIST) [https://github.com/zalandoresearch/fashion-mnist] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (60 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of MNIST images
(x with shape (batch_size, 28, 28, 1)) and corresponding one-hot
label vectors (y with shape (batch_size, 10)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

CIFAR-10 Data Set

	
class deepobs.tensorflow.datasets.cifar10.cifar10(batch_size, data_augmentation=True, train_eval_size=10000)

	DeepOBS data set class for the CIFAR-10 [https://www.cs.toronto.edu/~kriz/cifar.html] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (50 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, horizontal flipping, lighting augmentation) are
applied to the training data (but not the test data).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of CIFAR-10 images
(x with shape (batch_size, 32, 32, 3)) and corresponding one-hot
label vectors (y with shape (batch_size, 10)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

CIFAR-100 Data Set

	
class deepobs.tensorflow.datasets.cifar100.cifar100(batch_size, data_augmentation=True, train_eval_size=10000)

	DeepOBS data set class for the CIFAR-100 [https://www.cs.toronto.edu/~kriz/cifar.html] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (50 000 for train, 10 000
for test) the remainder is dropped in each epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, horizontal flipping, lighting augmentation) are
applied to the training data (but not the test data).

	train_eval_size (int) -- Size of the train eval data set.
Defaults to 10 000 the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of CIFAR-100 images
(x with shape (batch_size, 32, 32, 3)) and corresponding one-hot
label vectors (y with shape (batch_size, 100)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

SVHN Data Set

	
class deepobs.tensorflow.datasets.svhn.svhn(batch_size, data_augmentation=True, train_eval_size=26032)

	DeepOBS data set class for the Street View House Numbers (SVHN) [http://ufldl.stanford.edu/housenumbers/] data set.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size (73 000 for train, 26 000
for test) the remainder is dropped in each epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, lighting augmentation) are applied to the
training data (but not the test data).

	train_eval_size (int) -- Size of the train eval dataset.
Defaults to 26 000 the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of SVHN images
(x with shape (batch_size, 32, 32, 3)) and corresponding one-hot
label vectors (y with shape (batch_size, 10)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

ImageNet Data Set

	
class deepobs.tensorflow.datasets.imagenet.imagenet(batch_size, data_augmentation=True, train_eval_size=50000)

	DeepOBS data set class for the ImageNet [http://www.image-net.org/] data set.

Note

We use 1001 classes which includes an additional background class,
as it is used for example by the inception net.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size the remainder is dropped in each
epoch (after shuffling).

	data_augmentation (bool) -- If True some data augmentation operations
(random crop window, horizontal flipping, lighting augmentation) are
applied to the training data (but not the test data).

	train_eval_size (int) -- Size of the train eval dataset.
Defaults to 10 000.

	
batch

	A tuple (x, y) of tensors, yielding batches of ImageNet images
(x with shape (batch_size, 224, 224, 3)) and corresponding one-hot
label vectors (y with shape (batch_size, 1001)). Executing these
tensors raises a tf.errors.OutOfRangeError after one epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by testproblems
to adapt their behavior to this phase.

Tolstoi Data Set

	
class deepobs.tensorflow.datasets.tolstoi.tolstoi(batch_size, seq_length=50, train_eval_size=653237)

	DeepOBS data set class for character prediction on War and Peace by Leo Tolstoi.

	Parameters

	
	batch_size (int) -- The mini-batch size to use. Note that, if batch_size
is not a divider of the dataset size the remainder is dropped in each
epoch (after shuffling).

	seq_length (int) -- Sequence length to be modeled in each step.
Defaults to 50.

	train_eval_size (int) -- Size of the train eval dataset.
Defaults to 653 237, the size of the test set.

	
batch

	A tuple (x, y) of tensors, yielding batches of tolstoi data
(x with shape (batch_size, seq_length)) and (y with shape
(batch_size, seq_length) which is x shifted by one).
Executing these tensors raises a tf.errors.OutOfRangeError after one
epoch.

	
train_init_op

	A tensorflow operation initializing the dataset for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the testproblem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the testproblem for
evaluating on test data.

	
phase

	A string-value tf.Variable that is set to train, train_eval
or test, depending on the current phase. This can be used by
testproblems to adapt their behavior to this phase.

Test Problems

Currently DeepOBS includes twenty-six different test problems. A test problem is
given by a combination of a data set and a model and is characterized by its
loss function.

Each test problem inherits from the same base class with the following signature.

	
class deepobs.tensorflow.testproblems.testproblem.TestProblem(batch_size, weight_decay=None)

	Base class for DeepOBS test problems.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay (L2-regularization) factor to use. If
not specified, the test problems revert to their respective defaults.
Note: Some test problems do not use regularization and this value will
be ignored in such a case.

	
dataset

	The dataset used by the test problem (datasets.DataSet instance).

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term (might be
a constant 0.0 for test problems that do not use regularization).

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Sets up the test problem.

This includes setting up the data loading pipeline for the data set and
creating the tensorflow computation graph for this test problem
(e.g. creating the neural network).

Note

Some of the test problems described here are based on more general implementations.
For example the Wide ResNet 40-4 network on Cifar-100 is based on the general
Wide ResNet architecture which is also implemented. Therefore, it is very easy
to include new Wide ResNets if necessary.

Test Problems

	2D Test Problems
	2D Beale

	2D Branin

	2D Rosenbrock

	Quadratic Test Problems
	Quadratic Deep

	MNIST Test Problems
	MNIST LogReg

	MNIST MLP

	MNIST 2c2d

	MNIST VAE

	Fashion-MNIST Test Problems
	Fashion-MNIST LogReg

	Fashion-MNIST MLP

	Fashion-MNIST 2c2d

	Fashion-MNIST VAE

	CIFAR-10 Test Problems
	CIFAR-10 3c3d

	CIFAR-10 VGG16

	CIFAR-10 VGG19

	CIFAR-100 Test Problems
	CIFAR-100 3c3d

	CIFAR-100 VGG16

	CIFAR-100 VGG19

	CIFAR-100 All-CNN-C

	CIFAR-100 WideResNet 40-4

	SVHN Test Problems
	SVHN 3c3d

	SVHN WideResNet 16-4

	ImageNet Test Problems
	ImageNet VGG16

	ImageNet VGG19

	ImageNet Inception v3

	Tolstoi Test Problems
	Tolstoi Char RNN

2D Test Problems

Three two-dimensional test problems are included in DeepOBS. They are mainly
included for illustrative purposes as these explicit loss functions can be
plotted.

They are all stochastic variants of classical deterministic optimization test
functions.

Test Problems

	2D Beale

	2D Branin

	2D Rosenbrock

2D Beale

	
class deepobs.tensorflow.testproblems.two_d_beale.two_d_beale(batch_size, weight_decay=None)

	DeepOBS test problem class for a stochastic version of thetwo-dimensional Beale function as the loss function.

Using the deterministic Beale function [https://www.sfu.ca/~ssurjano/beale.html] and adding stochastic noise of
the form

\(u \cdot x + v \cdot y\)

where x and y are normally distributed with mean 0.0 and
standard deviation 1.0 we get a loss function of the form

\(((1.5 - u + u \cdot v)^2 + (2.25 - u + u \cdot v ^ 2) ^ 2 + (2.625 -\
u + u \cdot v ^ 3) ^ 2) + u \cdot x + v \cdot y\).

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for the two_d stochastic test problem.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Sets up the stochastic two-dimensional Beale test problem.
Using -4.5 and 4.5 as a starting point for the weights u
and v.

2D Branin

	
class deepobs.tensorflow.testproblems.two_d_branin.two_d_branin(batch_size, weight_decay=None)

	DeepOBS test problem class for a stochastic version of thetwo-dimensional Branin function as the loss function.

Using the deterministic Branin function [https://www.sfu.ca/~ssurjano/branin.html] and adding stochastic noise of
the form

\(u \cdot x + v \cdot y\)

where x and y are normally distributed with mean 0.0 and
standard deviation 1.0 we get a loss function of the form

\((v - 5.1/(4 \cdot \pi^2) u^2 + 5/ \pi u - 6)^2 +\
10 \cdot (1-1/(8 \cdot \pi)) \cdot \cos(u) + 10 + u \cdot x + v \cdot y\).

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for the two_d stochastic test problem.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Sets up the stochastic two-dimensional Branin test problem.
Using 2.5 and 12.5 as a starting point for the weights u
and v.

2D Rosenbrock

	
class deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock(batch_size, weight_decay=None)

	DeepOBS test problem class for a stochastic version of thetwo-dimensional Rosenbrock function as the loss function.

Using the deterministic Rosenbrock function [https://en.wikipedia.org/wiki/Rosenbrock_function] and adding stochastic
noise of the form

\(u \cdot x + v \cdot y\)

where x and y are normally distributed with mean 0.0 and
standard deviation 1.0 we get a loss function of the form

\((1 - u)^2 + 100 \cdot (v - u^2)^2 + u \cdot x + v \cdot y\)

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for the two_d stochastic test problem.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Sets up the stochastic two-dimensional Rosenbrock test problem.
Using -0.5 and 1.5 as a starting point for the weights u
and v.

Quadratic Test Problems

DeepOBS includes a stochastic quadratic problem with an eigenspectrum similar to
what has been reported for neural networks.

Other stochastic quadratic problems (of different dimensionality or with a
different Hessian structure) can be created easily using the quadratic_base
class.

	
class deepobs.tensorflow.testproblems._quadratic._quadratic_base(batch_size, weight_decay=None, hessian=array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]]))

	DeepOBS base class for a stochastic quadratic test problems creating lossfunctions of the form

\(0.5* (\theta - x)^T * Q * (\theta - x)\)

with Hessian Q and "data" x coming from the quadratic data set, i.e.,
zero-mean normal.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	hessian (np.array) -- Hessian of the quadratic problem.
Defaults to the 100 dimensional identity.

	
dataset

	The DeepOBS data set class for the quadratic test problem.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Sets up the stochastic quadratic test problem. The parameter Theta
will be initialized to (a vector of) 1.0.

Test Problems

	Quadratic Deep

Quadratic Deep

	
class deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep(batch_size, weight_decay=None)

	DeepOBS test problem class for a stochastic quadratic test problem 100dimensions. The 90 % of the eigenvalues of the Hessian are drawn from theinterval \((0.0, 1.0)\) and the other 10 % are from \((30.0, 60.0)\) simulating an eigenspectrum which has been reported for Deep Learning https://arxiv.org/abs/1611.01838.

This creatis a loss functions of the form

\(0.5* (\theta - x)^T * Q * (\theta - x)\)

with Hessian Q and "data" x coming from the quadratic data set, i.e.,
zero-mean normal.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for the quadratic test problem.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

MNIST Test Problems

Test Problems

	MNIST LogReg

	MNIST MLP

	MNIST 2c2d

	MNIST VAE

MNIST LogReg

	
class deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg(batch_size, weight_decay=None)

	DeepOBS test problem class for multinomial logistic regression on MNIST.

No regularization is used and the weights and biases are initialized to 0.0.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Sets up the logistic regression test problem on MNIST.

MNIST MLP

	
class deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp(batch_size, weight_decay=None)

	DeepOBS test problem class for a multi-layer perceptron neural network on MNIST.

The network is build as follows:

	Four fully-connected layers with 1000, 500, 100 and 10
units per layer.

	The first three layers use ReLU activation, and the last one a softmax
activation.

	The biases are initialized to 0.0 and the weight matrices with
truncated normal (standard deviation of 3e-2)

	The model uses a cross entropy loss.

	No regularization is used.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the multi-layer perceptron test problem instance on MNIST.

MNIST 2c2d

	
class deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d(batch_size, weight_decay=None)

	DeepOBS test problem class for a two convolutional and two dense layered neural network on MNIST.

The network has been adapted from the TensorFlow tutorial [https://www.tensorflow.org/tutorials/estimators/cnn] and consists of

	two conv layers with ReLUs, each followed by max-pooling

	one fully-connected layers with ReLUs

	10-unit output layer with softmax

	cross-entropy loss

	No regularization

The weight matrices are initialized with truncated normal (standard deviation
of 0.05) and the biases are initialized to 0.05.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Sets up the vanilla CNN test problem on MNIST.

MNIST VAE

	
class deepobs.tensorflow.testproblems.mnist_vae.mnist_vae(batch_size, weight_decay=None)

	DeepOBS test problem class for a variational autoencoder (VAE) on MNIST.

The network has been adapted from the here [https://towardsdatascience.com/teaching-a-variational-autoencoder-vae-to-draw-mnist-characters-978675c95776]
and consists of an encoder:

	With three convolutional layers with each 64 filters.

	Using a leaky ReLU activation function with \(\alpha = 0.3\)

	Dropout layers after each convolutional layer with a rate of 0.2.

and an decoder:

	With two dense layers with 24 and 49 units and leaky ReLU activation.

	With three deconvolutional layers with each 64 filters.

	Dropout layers after the first two deconvolutional layer with a rate of 0.2.

	A final dense layer with 28 x 28 units and sigmoid activation.

No regularization is used.

	Parameters

	
	batch_size (type) -- Batch size to use.

	weight_decay (type) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Sets up the VAE test problem on MNIST.

Fashion-MNIST Test Problems

Test Problems

	Fashion-MNIST LogReg

	Fashion-MNIST MLP

	Fashion-MNIST 2c2d

	Fashion-MNIST VAE

Fashion-MNIST LogReg

	
class deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg(batch_size, weight_decay=None)

	DeepOBS test problem class for multinomial logistic regression on Fasion-MNIST.

No regularization is used and the weights and biases are initialized to 0.0.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for Fashion-MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the logistic regression test problem on Fashion-MNIST.

Fashion-MNIST MLP

	
class deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp(batch_size, weight_decay=None)

	DeepOBS test problem class for a multi-layer perceptron neural network on Fashion-MNIST.

The network is build as follows:

	Four fully-connected layers with 1000, 500, 100 and 10
units per layer.

	The first three layers use ReLU activation, and the last one a softmax
activation.

	The biases are initialized to 0.0 and the weight matrices with
truncated normal (standard deviation of 3e-2)

	The model uses a cross entropy loss.

	No regularization is used.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for Fashion-MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the multi-layer perceptron test problem instance on
Fashion-MNIST.

Fashion-MNIST 2c2d

	
class deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d(batch_size, weight_decay=None)

	DeepOBS test problem class for a two convolutional and two dense layered neural network on Fashion-MNIST.

The network has been adapted from the TensorFlow tutorial [https://www.tensorflow.org/tutorials/estimators/cnn] and consists of

	two conv layers with ReLUs, each followed by max-pooling

	one fully-connected layers with ReLUs

	10-unit output layer with softmax

	cross-entropy loss

	No regularization

The weight matrices are initialized with truncated normal (standard deviation
of 0.05) and the biases are initialized to 0.05.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for Fashion-MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the vanilla CNN test problem on Fashion-MNIST.

Fashion-MNIST VAE

	
class deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae(batch_size, weight_decay=None)

	DeepOBS test problem class for a variational autoencoder (VAE) on Fashion-MNIST.

The network has been adapted from the here [https://towardsdatascience.com/teaching-a-variational-autoencoder-vae-to-draw-mnist-characters-978675c95776]
and consists of an encoder:

	With three convolutional layers with each 64 filters.

	Using a leaky ReLU activation function with \(\alpha = 0.3\)

	Dropout layers after each convolutional layer with a rate of 0.2.

and an decoder:

	With two dense layers with 24 and 49 units and leaky ReLU activation.

	With three deconvolutional layers with each 64 filters.

	Dropout layers after the first two deconvolutional layer with a rate of 0.2.

	A final dense layer with 28 x 28 units and sigmoid activation.

No regularization is used.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for Fashion-MNIST.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.
Will always be 0.0 since no regularizer is used.

	
set_up()

	Set up the VAE test problem on MNIST.

CIFAR-10 Test Problems

Test Problems

	CIFAR-10 3c3d

	CIFAR-10 VGG16

	CIFAR-10 VGG19

CIFAR-10 3c3d

	
class deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d(batch_size, weight_decay=0.002)

	DeepOBS test problem class for a three convolutional and three dense layered neural network on Cifar-10.

The network consists of

	thre conv layers with ReLUs, each followed by max-pooling

	two fully-connected layers with 512 and 256 units and ReLU activation

	10-unit output layer with softmax

	cross-entropy loss

	L2 regularization on the weights (but not the biases) with a default
factor of 0.002

The weight matrices are initialized using Xavier initialization and the biases
are initialized to 0.0.

A working training setting is batch size = 128, num_epochs = 100 and
SGD with learning rate of 0.01.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases. Defaults to 0.002.

	
dataset

	The DeepOBS data set class for Cifar-10.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the vanilla CNN test problem on Cifar-10.

CIFAR-10 VGG16

	
class deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16(batch_size, weight_decay=0.0005)

	DeepOBS test problem class for the VGG 16 network on Cifar-10.

The CIFAR-10 images are resized to 224 by 224 to fit the input
dimension of the original VGG network, which was designed for ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 16 consists of 16 weight layers, of mostly convolutions. The model uses
cross-entroy loss. A weight decay is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-10.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 16 test problem on Cifar-10.

CIFAR-10 VGG19

	
class deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19(batch_size, weight_decay=0.0005)

	DeepOBS test problem class for the VGG 19 network on Cifar-10.

The CIFAR-10 images are resized to 224 by 224 to fit the input
dimension of the original VGG network, which was designed for ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 19 consists of 19 weight layers, of mostly convolutions. The model uses
cross-entroy loss. A weight decay is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-10.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 19 test problem on Cifar-10.

CIFAR-100 Test Problems

Test Problems

	CIFAR-100 3c3d

	CIFAR-100 VGG16

	CIFAR-100 VGG19

	CIFAR-100 All-CNN-C

	CIFAR-100 WideResNet 40-4

CIFAR-100 3c3d

	
class deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d(batch_size, weight_decay=0.002)

	DeepOBS test problem class for a three convolutional and three dense layered neural network on Cifar-100.

The network consists of

	thre conv layers with ReLUs, each followed by max-pooling

	two fully-connected layers with 512 and 256 units and ReLU activation

	100-unit output layer with softmax

	cross-entropy loss

	L2 regularization on the weights (but not the biases) with a default
factor of 0.002

The weight matrices are initialized using Xavier initialization and the biases
are initialized to 0.0.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases. Defaults to 0.002.

	
dataset

	The DeepOBS data set class for Cifar-100.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the vanilla CNN test problem on Cifar-100.

CIFAR-100 VGG16

	
class deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16(batch_size, weight_decay=0.0005)

	DeepOBS test problem class for the VGG 16 network on Cifar-100.

The CIFAR-100 images are resized to 224 by 224 to fit the input
dimension of the original VGG network, which was designed for ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 16 consists of 16 weight layers, of mostly convolutions. The model uses
cross-entroy loss. A weight decay is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-100.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 16 test problem on Cifar-100.

CIFAR-100 VGG19

	
class deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19(batch_size, weight_decay=0.0005)

	DeepOBS test problem class for the VGG 19 network on Cifar-100.

The CIFAR-100 images are resized to 224 by 224 to fit the input
dimension of the original VGG network, which was designed for ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 19 consists of 19 weight layers, of mostly convolutions. The model uses
cross-entroy loss. A weight decay is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-100.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 19 test problem on Cifar-100.

CIFAR-100 All-CNN-C

	
class deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc(batch_size, weight_decay=0.0005)

	DeepOBS test problem class for the All Convolutional Neural Network C
on Cifar-100.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1412.6806].

The paper does not comment on initialization; here we use Xavier for conv
filters and constant 0.1 for biases.

A weight decay is used on the weights (but not the biases)
which defaults to 5e-4.

The reference training parameters from the paper are batch size = 256,
num_epochs = 350 using the Momentum optimizer with \(\mu = 0.9\) and
an initial learning rate of \(\alpha = 0.05\) and decrease by a factor of
10 after 200, 250 and 300 epochs.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-100.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the All CNN C test problem on Cifar-100.

CIFAR-100 WideResNet 40-4

	
class deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404(batch_size, weight_decay=0.0005)

	DeepOBS test problem class for the Wide Residual Network 40-4 architecture for CIFAR-100.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1605.07146].
A weight decay is used on the weights (but not the biases)
which defaults to 5e-4.

Training settings recommenden in the original paper [https://arxiv.org/abs/1605.07146]:
batch size = 128, num_epochs = 200 using the Momentum optimizer
with \(\mu = 0.9\) and an initial learning rate of 0.1 with a decrease by
0.2 after 60, 120 and 160 epochs.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for Cifar-100.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the Wide ResNet 40-4 test problem on Cifar-100.

SVHN Test Problems

Test Problems

	SVHN 3c3d

	SVHN WideResNet 16-4

SVHN 3c3d

	
class deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d(batch_size, weight_decay=0.002)

	DeepOBS test problem class for a three convolutional and three dense layered neural network on SVHN.

The network consists of

	thre conv layers with ReLUs, each followed by max-pooling

	two fully-connected layers with 512 and 256 units and ReLU activation

	10-unit output layer with softmax

	cross-entropy loss

	L2 regularization on the weights (but not the biases) with a default
factor of 0.002

The weight matrices are initialized using Xavier initialization and the biases
are initialized to 0.0.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases. Defaults to 0.002.

	
dataset

	The DeepOBS data set class for SVHN.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the vanilla CNN test problem on SVHN.

SVHN WideResNet 16-4

	
class deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164(batch_size, weight_decay=0.0005)

	DeepOBS test problem class for the Wide Residual Network 16-4 architecture for SVHN.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1605.07146].
A weight decay is used on the weights (but not the biases)
which defaults to 5e-4.

Training settings recommenden in the original paper [https://arxiv.org/abs/1605.07146]:
batch size = 128, num_epochs = 160 using the Momentum optimizer
with \(\mu = 0.9\) and an initial learning rate of 0.01 with a decrease by
0.1 after 80 and 120 epochs.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for SVHN.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the Wide ResNet 16-4 test problem on SVHN.

ImageNet Test Problems

Test Problems

	ImageNet VGG16

	ImageNet VGG19

	ImageNet Inception v3

ImageNet VGG16

	
class deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16(batch_size, weight_decay=0.0005)

	DeepOBS test problem class for the VGG 16 network on ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 16 consists of 16 weight layers, of mostly convolutions. The model uses
cross-entroy loss. A weight decay is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for ImageNet.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 16 test problem on ImageNet.

ImageNet VGG19

	
class deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19(batch_size, weight_decay=0.0005)

	DeepOBS test problem class for the VGG 19 network on ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1409.1556].
VGG 19 consists of 19 weight layers, of mostly convolutions. The model uses
cross-entroy loss. A weight decay is used on the weights (but not the biases)
which defaults to 5e-4.

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for ImageNet.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the VGG 19 test problem on ImageNet.

ImageNet Inception v3

	
class deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3(batch_size, weight_decay=0.0005)

	DeepOBS test problem class for the Inception version 3 architecture on
ImageNet.

Details about the architecture can be found in the original paper [https://arxiv.org/abs/1512.00567].

There are many changes from the paper to the official Tensorflow implementation [https://github.com/tensorflow/models/blob/master/research/inception/inception/slim/inception_model.py]
as well as the model.txt that can be found in the sources of the original
paper. We chose to implement the version from Tensorflow (with possibly some
minor changes)

In the original paper [https://arxiv.org/abs/1512.00567] they trained the network using:

	100 Epochs.

	Batch size 32.

	RMSProp with a decay of 0.9 and \(\epsilon = 1.0\).

	Initial learning rate 0.045.

	Learning rate decay every two epochs with exponential rate of 0.94.

	Gradient clipping with threshold 2.0

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- Weight decay factor. Weight decay (L2-regularization)
is used on the weights but not the biases.
Defaults to 5e-4.

	
dataset

	The DeepOBS data set class for ImageNet.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the Inception v3 test problem on ImageNet.

Tolstoi Test Problems

Test Problems

	Tolstoi Char RNN

Tolstoi Char RNN

	
class deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn(batch_size, weight_decay=None)

	DeepOBS test problem class for a two-layer LSTM for character-level language
modelling (Char RNN) on Tolstoi's War and Peace.

Some network characteristics:

	128 hidden units per LSTM cell

	sequence length 50

	cell state is automatically stored in variables between subsequent steps

	when the phase placeholder swithches its value from one step to the next,
the cell state is set to its zero value (meaning that we set to zero state
after each round of evaluation, it is therefore important to set the
evaluation interval such that we evaluate after a full epoch.)

Working training parameters are:

	batch size 50

	200 epochs

	SGD with a learning rate of \(\approx 0.1\) works

	Parameters

	
	batch_size (int) -- Batch size to use.

	weight_decay (float) -- No weight decay (L2-regularization) is used in this
test problem. Defaults to None and any input here is ignored.

	
dataset

	The DeepOBS data set class for Tolstoi.

	
train_init_op

	A tensorflow operation initializing the test problem for the
training phase.

	
train_eval_init_op

	A tensorflow operation initializing the test problem for
evaluating on training data.

	
test_init_op

	A tensorflow operation initializing the test problem for
evaluating on test data.

	
losses

	A tf.Tensor of shape (batch_size,) containing the per-example loss
values.

	
regularizer

	A scalar tf.Tensor containing a regularization term.

	
accuracy

	A scalar tf.Tensor containing the mini-batch mean accuracy.

	
set_up()

	Set up the Char RNN test problem instance on Tolstoi.

Runner

Runner take care of the actual training process in DeepOBS. They also log
performance statistics such as the loss and accuracy on the test and training
data set.

The output of those runners is saved into JSON files and optionally also
TensorFlow output files that can be plotted in real-time using Tensorboard.

Runner

	Standard Runner

Standard Runner

	
class deepobs.tensorflow.runners.standard_runner.StandardRunner(optimizer_class, hyperparams)

	Provides functionality to run optimizers on DeepOBS testproblems including
the logging of important performance metrics.

	Parameters

	
	optimizer_class -- Optimizer class, which should inherit from
tf.train.Optimizer and/or obey the same interface for .minimize().

	hyperparams -- A list describing the optimizer's hyperparameters other
than learning rate. Each entry of the list is a dictionary describing
one of the hyperparameters. This dictionary is expected to have the
following two fields:

	hyperparams["name"] must contain the name of the parameter (i.e.,
the exact name of the corresponding keyword argument to the
optimizer class' init function.

	hyperparams["type"] specifies the type of the parameter (e.g.,
int, float, bool).

Optionally, the dictionary can have a third field indexed by the key
"default", which specifies a default value for the hyperparameter.

Example

>>> optimizer_class = tf.train.MomentumOptimizer
>>> hyperparams = [
 {"name": "momentum", "type": float},
 {"name": "use_nesterov", "type": bool, "default": False}]
>>> runner = StandardRunner(optimizer_class, hyperparms)

	
run(testproblem=None, weight_decay=None, batch_size=None, num_epochs=None, learning_rate=None, lr_sched_epochs=None, lr_sched_factors=None, random_seed=None, data_dir=None, output_dir=None, train_log_interval=None, print_train_iter=None, tf_logging=None, no_logs=None, **optimizer_hyperparams)

	Runs a given optimizer on a DeepOBS testproblem.

This method receives all relevant options to run the optimizer on a DeepOBS
testproblem, including the hyperparameters of the optimizers, which can be
passed as keyword arguments (based on the names provided via hyperparams
in the init function).

Options which are not passed here will
automatically be added as command line arguments. (Some of those will be
required, others will have defaults; run the script with the --help flag
to see a description of the command line interface.)

Training statistics (train/test loss/accuracy) are collected and will be
saved to a JSON output file, together with metadata. The training
statistics can optionally also be saved in TensorFlow output files and read
during training using Tensorboard.

	Parameters

	
	testproblem (str) -- Name of a DeepOBS test problem.

	weight_decay (float) -- The weight decay factor to use.

	batch_size (int) -- The mini-batch size to use.

	num_epochs (int) -- The number of epochs to train.

	learning_rate (float) -- The learning rate to use. This will function as the
base learning rate when implementing a schedule using
lr_sched_epochs and lr_sched_factors (see below).

	lr_sched_epochs (list) -- A list of epoch numbers (positive integers) that
mark learning rate changes. The base learning rate is passed via
learning_rate and the factors by which to change are passed via
lr_sched_factors.
Example: learning_rate=0.3, lr_sched_epochs=[50, 100],
lr_sched_factors=[0.1 0.01] will start with a learning rate of
0.3, then decrease to 0.1*0.3=0.03 after training for 50
epochs, and decrease to 0.01*0.3=0.003 after training for 100
epochs.

	lr_sched_factors (list) -- A list of factors (floats) by which to change the
learning rate. The base learning rate has to be passed via
learing_rate and the epochs at which to change the learning rate
have to be passed via lr_sched_factors.
Example: learning_rate=0.3, lr_sched_epochs=[50, 100],
lr_sched_factors=[0.1 0.01] will start with a learning rate of
0.3, then decrease to 0.1*0.3=0.03 after training for 50
epochs, and decrease to 0.01*0.3=0.003 after training for 100
epochs.

	random_seed (int) -- Random seed to use. If unspecified, it defaults to
42.

	data_dir (str) -- Path to the DeepOBS data directory. If unspecified,
DeepOBS uses its default /data_deepobs.

	output_dir (str) -- Path to the output directory. Within this directory,
subfolders for the testproblem and the optimizer are automatically
created. If unspecified, defaults to '/results'.

	train_log_interval (int) -- Interval of steps at which to log training loss.
If unspecified it defaults to 10.

	print_train_iter (bool) -- If True, training loss is printed to screen.
If unspecified it defaults to False.

	tf_logging (bool) -- If True log all statistics with tensorflow summaries,
which can be viewed in real time with tensorboard. If unspecified it
defaults to False.

	no_logs (bool) -- If True no JSON files are created. If unspecified
it defaults to False.

	optimizer_hyperparams (dict) -- Keyword arguments for the hyperparameters of
the optimizer. These are the ones specified in the hyperparams
dictionary passed to the __init__.

Analyzer

DeepOBS uses the analyzer class to get meaning full outputs from the results
created by the runners. This includes:

	Getting the best settings (e.g. best learning rate) for an optimizer on a specific test problem.

	Plotting the learning_rate sensitivity for multiple optimizers on a test problem.

	Plotting all performance metrics of the whole benchmark set.

	Returning the overall performance table for multiple optimizers.

The analyzer can return those outputs as matplotlib plots or .tex files for
direct inclusion in academic publications.

DeepOBS also includes a convenience script using this analyzer class for these
most used cases, see Plot Results

Analyzer

	Analyzer

	Test Problem Analyzer

	Optimizer Analyzer

	Setting Analyzer

	Aggregate Run

Analyzer

	
class deepobs.analyzer.analyze_utils.Analyzer(path)

	DeepOBS analyzer class to generate result plots or get other summaries.

	Parameters

	path (str) -- Path to the results folder. This folder should contain one
or multiple testproblem folders.

	
testproblems

	Dictionary of test problems where the key is the
name of a test problem (e.g. cifar10_3c3d) and the value is an
instance of the TestProblemAnalyzer class (see below).

Test Problem Analyzer

	
class deepobs.analyzer.analyze_utils.TestProblemAnalyzer(path, tp)

	DeepOBS analyzer class for a specific test problem.

This class will store all relevant information regarding a test problem,
such as the convergence performance of this problem.

	Parameters

	
	path (str) -- Path to the parent folder of the test problem (i.e. the
results folder).

	tp (str) -- Name of the test problem (same as the folder name).

	
name

	Name of the test problem in DeepOBS format
(e.g. cifar10_3c3d).

	
conv_perf

	Convergence performance for this test problem.

	
metric

	Metric to use for this test problem. If available this
will be test_accuracies, otherwise test_losses.

	
optimizer

	Dictionary of optimizers for this test problem where
the key is the name of the optimizer (e.g.
GradientDescentOptimizer) and the value is an instance of the
OptimizerAnalyzer class (see below).

Optimizer Analyzer

	
class deepobs.analyzer.analyze_utils.OptimizerAnalyzer(path, opt, metric, testproblem, conv_perf)

	DeepOBS analyzer class for an optimizer (and a specific test problem).

This class will give access to all relevant information regarding this
optimizer such as the best performing hyperparameter setting or the number
of settings.

	Parameters

	
	path (str) -- Path to the parent folder of the optimizer folder (i.e. the
test problem folder).

	opt (str) -- Name of the optimizer (folder).

	metric (str) -- Metric to use for this test problem. If available this
will be test_accuracies, otherwise test_losses.

	testproblem (str) -- Name of the test problem this optimizer (folder)
belongs to.

	conv_perf (float) -- Convergence performance of the test problem this
optimizer (folder) belongs to.

	
name

	Name of the optimizer (folder).

	
metric

	Metric to use for this test problem. If available this
will be test_accuracies, otherwise test_losses.

	
testproblem

	Name of the test problem this optimizer (folder)
belongs to.

	
conv_perf

	Convergence performance for this test problem.

	
settings

	Dictionary of hyperparameter settings for this
optimizer (on this test problem) where the key is the name of the
setting (folder) and the value is an instance of the
SettingAnalyzer class (see below).

	
num_settings

	Total number of settings for this optimizer
(and test problem)

	
get_best_setting_best()

	Returns the setting for this optimizer that has the best overall
performance using the metric (test_losses or test_accuracies)
defined for this test problem. In contrast to get_best_setting_final
in not only looks at the final performance per setting, but the best
performance per setting.

	Returns

	Instance of the SettingAnalyzer class with the best
overall performance

	Return type

	SettingAnalyzer

	
get_best_setting_final()

	Returns the setting for this optimizer that has the best final
performance using the metric (test_losses or test_accuracies)
defined for this test problem.

	Returns

	Instance of the SettingAnalyzer class with the best
final performance

	Return type

	SettingAnalyzer

	
get_bm_table(perf_table, mode='most')

	Generates the overall performance table for this optimizer.

This includes metrics for the performance, speed and tuneability of this
optimizer (on this test problem).

	Parameters

	
	perf_table (dict) -- A dictionary with three keys: Performance,
Speed and Tuneability.

	mode (str) -- Whether to use the setting with the best final
(final) performance, the best overall (best) performance
or the setting with the most runs (most).
Defaults to most.

	Returns

	Dictionary with holding the performance, speed and tuneability
measure for this optimizer.

	Return type

	dict

	
get_setting_most_runs()

	Returns the setting with the most repeated runs (with the same
setting, but probably different seeds).

	Returns

	Instance of the SettingAnalyzer class with the most
repeated runs.

	Return type

	SettingAnalyzer

	
plot_lr_sensitivity(ax, mode='final')

	Generates the learning rate sensitivity plot for this optimizer.
This plots the relative performance (relative to the best setting for
this optimizer) against the learning rate used in this setting.

This assumes that all settings or otherwise equal and only different in
the learning rate.

	Parameters

	
	ax (matplotlib.axes) -- Handle to a matplotlib axis to plot the
learning rate sensitivity onto.

	mode (str) -- Whether to use the final (final) performance or the
best (best) when evaluating each setting.
Defaults to final.

	
plot_performance(ax, mode='most')

	Generates a performance plot for this optimzer using one
hyperparameter setting.

Can either use the setting with the best final performance, the best
overall performance or the setting with the most runs.

This function will plot all four possible performance metrics
(test_losses, train_losses, test_accuracies and
train_accuracies).

	Parameters

	
	ax (list) -- List of four matplotlib axis to plot the performancs
metrics onto.

	mode (str) -- Whether to use the setting with the best final
(final) performance, the best overall (best) performance
or the setting with the most runs (most) when plotting.
Defaults to most.

Setting Analyzer

	
class deepobs.analyzer.analyze_utils.SettingAnalyzer(path, sett, metric, testproblem, conv_perf)

	DeepOBS analyzer class for a setting (a hyperparameter setting).

	Parameters

	
	path (str) -- Path to the parent folder of the setting folder (i.e. the
optimizer folder).

	sett (str) -- Name of the setting (folder).

	metric (str) -- Metric to use for this test problem. If available this
will be test_accuracies, otherwise test_losses.

	testproblem (str) -- Name of the test problem this setting (folder)
belongs to.

	conv_perf (float) -- Convergence performance of the test problem this
setting (folder) belongs to.

	
name

	Name of the setting (folder).

	Type

	str

	
metric

	Metric to use for this test problem. If available this
will be test_accuracies, otherwise test_losses.

	Type

	str

	
testproblem

	Name of the test problem this setting (folder)
belongs to.

	Type

	str

	
conv_perf

	Convergence performance for this test problem.

	Type

	float

	
aggregate

	Instance of the AggregateRun class for all
runs with this setting.

	Type

	AggregateRun

Aggregate Run

	
class deepobs.analyzer.analyze_utils.AggregateRun(path, runs, name, metric, testproblem, conv_perf)

	DeepOBS class for a group of runs witht the same settings (but possibly
different seeds).

	Parameters

	
	path (str) -- Path to the parent folder of the aggregate run folder (i.e.
the settings folder).

	runs (list) -- List of run names all with the same setting.

	name (str) -- Name of the aggregate run (folder).

	metric (str) -- Metric to use for this test problem. If available this
will be test_accuracies, otherwise test_losses.

	testproblem (str) -- Name of the test problem this aggregate run (folder)
belongs to.

	conv_perf (float) -- Convergence performance of the test problem this
aggregate run (folder) belongs to.

	
name

	Name of the aggregate run (folder).

	
testproblem

	Name of the test problem this aggregate run (folder)
belongs to.

	
conv_perf

	Convergence performance for this test problem.

	
runs

	List of run names all with the same setting.

	
num_runs

	Number of runs (with the same setting).

	
metric

	Metric to use for this test problem. If available this
will be test_accuracies, otherwise test_losses.

	
output

	Dictionary including all aggregate information of the
runs with this setting. All performance metrics have a mean and a
standard deviation (can be zero if there is only one run with this
setting).

	
final_value

	Final (mean) value of the test problem's metric

	
best_value

	Best (mean) value of the test problem's metric

Scripts

DeepOBS includes a few convenience scripts that can be run directly from the
command line

	Prepare Data: Takes care of downloading and preprocessing all data sets
for DeepOBS.

	Estimate Runtime: Allows to estimate the runtime overhead of a new
optimizer compared to SGD.

	Plot Results: Quickly plots the suggested outputs of a optimizer
benchmark.

Scripts

	Prepare Data

	Estimate Runtime

	Plot Results

Prepare Data

A convenience script to download all data sets for DeepOBS and preprocess them
so they are ready to be used with DeepOBS.

Note

Currently there is no data downloading and preprocessing mechanic implemented
for ImageNet. Downloading the ImageNet data set requires an account and
can take a lot of time to download. Additionally, it requires quite a large
amount of memory. The best way currently is to download and preprocess the
ImageNet data set separately if needed and move it into the DeepOBS data
folder.

The file will create a set of folders of the following structure:

data_deepobs

├── cifar10

│ ├── data_batch_1.bin

│ ├── data_batch_2.bin

│ └── ...

├── cifar100

│ ├── train.bin

│ ├── test.bin

│ └── ...

├── fmnist

│ ├── t10k-images-idx3-ubyte.gz

│ ├── t10k-labels-idx1-ubyte.gz

│ └── ...

├── mnist

│ ├── t10k-images-idx3-ubyte.gz

│ ├── t10k-labels-idx1-ubyte.gz

│ └── ...

├── svhn

│ ├── data_batch_0.bin

│ ├── data_batch_1.bin

│ └── ...

├── tolstoi

│ ├── train.npy

│ ├── test.npy

│ └── ...

├── imagenet

│ ├── train-00000-of-01024

│ ├── ...

│ ├── validation-00000-of-00128

│ └── ...

DeepOBS expects a structure like this, so if you already have (most of the) the
data sets already, you still need to bring it into this order.

Usage:

usage: deepobs_prepare_data.sh [--data_dir=DIR] [--skip SKIP] [--only ONLY]

Named Arguments

	-d --data_dir

	Path where the data sets should be saved. Defaults to the current folder.

	-s --skip

	Defines which data sets should be skipped. Argument needs to be one of the following mnist, fmnist, cifar10, cifar100, svhn, imagenet, tolstoi. You can use the --skip argument multiple times.

	-o --only

	Specify if only a single data set should be downloaded. Argument needs to be one of the following mnist, fmnist, cifar10, cifar100, svhn, imagenet, tolstoi. This overwrites the --skip argument and should can only be used once.

Estimate Runtime

A convenience script to estimate the run time overhead of a new optimization
method compared to SGD.

By default this script runs SGD as well as the new optimizer 5 times for
3 epochs on the multi-layer perceptron on MNIST while measuring the time.
It will output the mean run time overhead of the new optimizer for these runs.

Optionally the setup can be changed, by varying the test problem, the number of
epochs, the number of runs, etc. if this allows for a fairer evaluation.

Usage:

Run a new run script and compare its runtime to SGD.

usage: deepobs_estimate_runtime.py [-h] [--test_problem TEST_PROBLEM]
 [--data_dir DATA_DIR] [--bs BS] [--lr LR]
 [-N NUM_EPOCHS] [--num_runs NUM_RUNS]
 [--saveto SAVETO]
 [--optimizer_args OPTIMIZER_ARGS]
 run_script

Positional Arguments

	run_script

	Path to the new run_script.

Named Arguments

	--test_problem

	Name of the test problem to run both scripts.

Default: "mnist_mlp"

	--data_dir

	Path to the base data dir. If not set, deepobs uses its default.

Default: "data_deepobs"

	--bs, --batch_size

	The batch size (positive integer).

Default: 128

	--lr, --learning_rate

	The learning rate of both SGD and the new optimizer, defaults to 1e-5.

Default: 1e-05

	-N, --num_epochs

	Total number of training epochs per run.

Default: 3

	--num_runs

	Total number of runs for each optimizer.

Default: 5

	--saveto

	Folder for saving a txt files with a summary.

	--optimizer_args

	Additional arguments for the new optimizer

Plot Results

A convenience script to extract useful information out of the results create by
the runners.

This script can return one or all of the below information:

	Get best run: Returns the best hyperparameter setting for each optimizer in
each test problem.

	Plot learning rate sensitivity: Creates a plot for each test problem showing
the relative performance of each optimizer against the learning rate to get
a sense of how difficult the tuning process was.

	Plot performance: Creates a plot for the small and large benchmark
set, plotting (if available) all four performance metric (losses and
accuracies for both the test and the train data set) for each optimizer.

	Plot table: Creates the overall performance table for the small and
large benchmark set including metrics for the performance, speed and
tuneability of each optimizer on each test problem.

By default this script also plots the baseline results for SGD, Momentum
and Adam, but this can be turned off.

Usage:

Plotting tool for DeepOBS.

usage: deepobs_plot_results.py [-h] [--get_best_run] [--plot_lr_sensitivity]
 [--plot_performance] [--plot_table] [--full]
 [--ignore_baselines]
 path

Positional Arguments

	path

	Path to the results folder

Named Arguments

	--get_best_run

	Return best hyperparameter setting per optimizer and testproblem.

Default: False

	--plot_lr_sensitivity

	Plot 'sensitivity' plot for the learning rates.

Default: False

	--plot_performance

	Plot performance plot compared to the baselines.

Default: False

	--plot_table

	Plot overall performance table including speed and hyperparameters.

Default: False

	--full

	Run a full analysis and plot all figures.

Default: False

	--ignore_baselines

	Ignore baselines and just plot from results folder.

Default: False

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T

_

 	
 	_quadratic_base (class in deepobs.tensorflow.testproblems._quadratic)

A

 	
 	accuracy (deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	
 	aggregate (deepobs.analyzer.analyze_utils.SettingAnalyzer attribute)

 	AggregateRun (class in deepobs.analyzer.analyze_utils)

 	Analyzer (class in deepobs.analyzer.analyze_utils)

B

 	
 	batch (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.quadratic.quadratic attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	(deepobs.tensorflow.datasets.tolstoi.tolstoi attribute)

 	(deepobs.tensorflow.datasets.two_d.two_d attribute)

 	
 	best_value (deepobs.analyzer.analyze_utils.AggregateRun attribute)

C

 	
 	cifar10 (class in deepobs.tensorflow.datasets.cifar10)

 	cifar100 (class in deepobs.tensorflow.datasets.cifar100)

 	cifar100_3c3d (class in deepobs.tensorflow.testproblems.cifar100_3c3d)

 	cifar100_allcnnc (class in deepobs.tensorflow.testproblems.cifar100_allcnnc)

 	cifar100_vgg16 (class in deepobs.tensorflow.testproblems.cifar100_vgg16)

 	cifar100_vgg19 (class in deepobs.tensorflow.testproblems.cifar100_vgg19)

 	cifar100_wrn404 (class in deepobs.tensorflow.testproblems.cifar100_wrn404)

 	
 	cifar10_3c3d (class in deepobs.tensorflow.testproblems.cifar10_3c3d)

 	cifar10_vgg16 (class in deepobs.tensorflow.testproblems.cifar10_vgg16)

 	cifar10_vgg19 (class in deepobs.tensorflow.testproblems.cifar10_vgg19)

 	conv_perf (deepobs.analyzer.analyze_utils.AggregateRun attribute)

 	(deepobs.analyzer.analyze_utils.OptimizerAnalyzer attribute)

 	(deepobs.analyzer.analyze_utils.SettingAnalyzer attribute)

 	(deepobs.analyzer.analyze_utils.TestProblemAnalyzer attribute)

D

 	
 	DataSet (class in deepobs.tensorflow.datasets.dataset)

 	dataset (deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

F

 	
 	final_value (deepobs.analyzer.analyze_utils.AggregateRun attribute)

 	fmnist (class in deepobs.tensorflow.datasets.fmnist)

 	fmnist_2c2d (class in deepobs.tensorflow.testproblems.fmnist_2c2d)

 	
 	fmnist_logreg (class in deepobs.tensorflow.testproblems.fmnist_logreg)

 	fmnist_mlp (class in deepobs.tensorflow.testproblems.fmnist_mlp)

 	fmnist_vae (class in deepobs.tensorflow.testproblems.fmnist_vae)

G

 	
 	get_best_setting_best() (deepobs.analyzer.analyze_utils.OptimizerAnalyzer method)

 	get_best_setting_final() (deepobs.analyzer.analyze_utils.OptimizerAnalyzer method)

 	
 	get_bm_table() (deepobs.analyzer.analyze_utils.OptimizerAnalyzer method)

 	get_setting_most_runs() (deepobs.analyzer.analyze_utils.OptimizerAnalyzer method)

I

 	
 	imagenet (class in deepobs.tensorflow.datasets.imagenet)

 	imagenet_inception_v3 (class in deepobs.tensorflow.testproblems.imagenet_inception_v3)

 	
 	imagenet_vgg16 (class in deepobs.tensorflow.testproblems.imagenet_vgg16)

 	imagenet_vgg19 (class in deepobs.tensorflow.testproblems.imagenet_vgg19)

L

 	
 	losses (deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

M

 	
 	metric (deepobs.analyzer.analyze_utils.AggregateRun attribute)

 	(deepobs.analyzer.analyze_utils.OptimizerAnalyzer attribute)

 	(deepobs.analyzer.analyze_utils.SettingAnalyzer attribute)

 	(deepobs.analyzer.analyze_utils.TestProblemAnalyzer attribute)

 	
 	mnist (class in deepobs.tensorflow.datasets.mnist)

 	mnist_2c2d (class in deepobs.tensorflow.testproblems.mnist_2c2d)

 	mnist_logreg (class in deepobs.tensorflow.testproblems.mnist_logreg)

 	mnist_mlp (class in deepobs.tensorflow.testproblems.mnist_mlp)

 	mnist_vae (class in deepobs.tensorflow.testproblems.mnist_vae)

N

 	
 	name (deepobs.analyzer.analyze_utils.AggregateRun attribute)

 	(deepobs.analyzer.analyze_utils.OptimizerAnalyzer attribute)

 	(deepobs.analyzer.analyze_utils.SettingAnalyzer attribute)

 	(deepobs.analyzer.analyze_utils.TestProblemAnalyzer attribute)

 	
 	num_runs (deepobs.analyzer.analyze_utils.AggregateRun attribute)

 	num_settings (deepobs.analyzer.analyze_utils.OptimizerAnalyzer attribute)

O

 	
 	optimizer (deepobs.analyzer.analyze_utils.TestProblemAnalyzer attribute)

 	
 	OptimizerAnalyzer (class in deepobs.analyzer.analyze_utils)

 	output (deepobs.analyzer.analyze_utils.AggregateRun attribute)

P

 	
 	phase (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.quadratic.quadratic attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	(deepobs.tensorflow.datasets.tolstoi.tolstoi attribute)

 	(deepobs.tensorflow.datasets.two_d.two_d attribute)

 	
 	plot_lr_sensitivity() (deepobs.analyzer.analyze_utils.OptimizerAnalyzer method)

 	plot_performance() (deepobs.analyzer.analyze_utils.OptimizerAnalyzer method)

Q

 	
 	quadratic (class in deepobs.tensorflow.datasets.quadratic)

 	
 	quadratic_deep (class in deepobs.tensorflow.testproblems.quadratic_deep)

R

 	
 	regularizer (deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

 	
 	run() (deepobs.tensorflow.runners.standard_runner.StandardRunner method)

 	runs (deepobs.analyzer.analyze_utils.AggregateRun attribute)

S

 	
 	set_up() (deepobs.tensorflow.testproblems._quadratic._quadratic_base method)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d method)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc method)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 method)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 method)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 method)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d method)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 method)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 method)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d method)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg method)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp method)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae method)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 method)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 method)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 method)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d method)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg method)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp method)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae method)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d method)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 method)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem method)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn method)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale method)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin method)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock method)

 	
 	SettingAnalyzer (class in deepobs.analyzer.analyze_utils)

 	settings (deepobs.analyzer.analyze_utils.OptimizerAnalyzer attribute)

 	StandardRunner (class in deepobs.tensorflow.runners.standard_runner)

 	svhn (class in deepobs.tensorflow.datasets.svhn)

 	svhn_3c3d (class in deepobs.tensorflow.testproblems.svhn_3c3d)

 	svhn_wrn164 (class in deepobs.tensorflow.testproblems.svhn_wrn164)

T

 	
 	test_init_op (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.quadratic.quadratic attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	(deepobs.tensorflow.datasets.tolstoi.tolstoi attribute)

 	(deepobs.tensorflow.datasets.two_d.two_d attribute)

 	(deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

 	TestProblem (class in deepobs.tensorflow.testproblems.testproblem)

 	testproblem (deepobs.analyzer.analyze_utils.AggregateRun attribute)

 	(deepobs.analyzer.analyze_utils.OptimizerAnalyzer attribute)

 	(deepobs.analyzer.analyze_utils.SettingAnalyzer attribute)

 	TestProblemAnalyzer (class in deepobs.analyzer.analyze_utils)

 	testproblems (deepobs.analyzer.analyze_utils.Analyzer attribute)

 	tolstoi (class in deepobs.tensorflow.datasets.tolstoi)

 	tolstoi_char_rnn (class in deepobs.tensorflow.testproblems.tolstoi_char_rnn)

 	train_eval_init_op (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.quadratic.quadratic attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	(deepobs.tensorflow.datasets.tolstoi.tolstoi attribute)

 	(deepobs.tensorflow.datasets.two_d.two_d attribute)

 	(deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

 	
 	train_init_op (deepobs.tensorflow.datasets.cifar10.cifar10 attribute)

 	(deepobs.tensorflow.datasets.cifar100.cifar100 attribute)

 	(deepobs.tensorflow.datasets.dataset.DataSet attribute)

 	(deepobs.tensorflow.datasets.fmnist.fmnist attribute)

 	(deepobs.tensorflow.datasets.imagenet.imagenet attribute)

 	(deepobs.tensorflow.datasets.mnist.mnist attribute)

 	(deepobs.tensorflow.datasets.quadratic.quadratic attribute)

 	(deepobs.tensorflow.datasets.svhn.svhn attribute)

 	(deepobs.tensorflow.datasets.tolstoi.tolstoi attribute)

 	(deepobs.tensorflow.datasets.two_d.two_d attribute)

 	(deepobs.tensorflow.testproblems._quadratic._quadratic_base attribute)

 	(deepobs.tensorflow.testproblems.cifar100_3c3d.cifar100_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar100_allcnnc.cifar100_allcnnc attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg16.cifar100_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_vgg19.cifar100_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.cifar100_wrn404.cifar100_wrn404 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_3c3d.cifar10_3c3d attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg16.cifar10_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.cifar10_vgg19.cifar10_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.fmnist_2c2d.fmnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.fmnist_logreg.fmnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.fmnist_mlp.fmnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.fmnist_vae.fmnist_vae attribute)

 	(deepobs.tensorflow.testproblems.imagenet_inception_v3.imagenet_inception_v3 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg16.imagenet_vgg16 attribute)

 	(deepobs.tensorflow.testproblems.imagenet_vgg19.imagenet_vgg19 attribute)

 	(deepobs.tensorflow.testproblems.mnist_2c2d.mnist_2c2d attribute)

 	(deepobs.tensorflow.testproblems.mnist_logreg.mnist_logreg attribute)

 	(deepobs.tensorflow.testproblems.mnist_mlp.mnist_mlp attribute)

 	(deepobs.tensorflow.testproblems.mnist_vae.mnist_vae attribute)

 	(deepobs.tensorflow.testproblems.quadratic_deep.quadratic_deep attribute)

 	(deepobs.tensorflow.testproblems.svhn_3c3d.svhn_3c3d attribute)

 	(deepobs.tensorflow.testproblems.svhn_wrn164.svhn_wrn164 attribute)

 	(deepobs.tensorflow.testproblems.testproblem.TestProblem attribute)

 	(deepobs.tensorflow.testproblems.tolstoi_char_rnn.tolstoi_char_rnn attribute)

 	(deepobs.tensorflow.testproblems.two_d_beale.two_d_beale attribute)

 	(deepobs.tensorflow.testproblems.two_d_branin.two_d_branin attribute)

 	(deepobs.tensorflow.testproblems.two_d_rosenbrock.two_d_rosenbrock attribute)

 	two_d (class in deepobs.tensorflow.datasets.two_d)

 	two_d_beale (class in deepobs.tensorflow.testproblems.two_d_beale)

 	two_d_branin (class in deepobs.tensorflow.testproblems.two_d_branin)

 	two_d_rosenbrock (class in deepobs.tensorflow.testproblems.two_d_rosenbrock)

 _static/ajax-loader.gif

_images/plot_performance.png
Test Loss

Train Loss

Benchmark Set Small

P1 Quadratic Deep 20 P2 MNIST - VAE 20 P3 F-MNIST - CNN 20 P4 CIFAR-10 - CNN
200
15 15 15
100 10 10 10
2.0 2.0 2.0
250
200 15 15 15
150
10 10 10
0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 10
Epochs Epochs 520 20
g
5
g 15 15
<
a
3
=10 10
> 20 2.0
3
e
5
g1s 15
<
c
= 10 10
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6

Epochs Epochs

_images/stack.png
 tex files of learn-
ing curves for new

Visualization izer and the

Performances re-
sulis of the most
popular optimizers.

Runners

cific test problem.

Losses and ac-
curacy of a deep
learning model.

Pre-processed and
batched data.

Data Loading

Data Downloading

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/performance_plot.png
Test
Loss

Train
Loss

Test
Loss

Train
Loss

P1 Quadratic Deep P2 MNIST - VAE P3 F-MNIST - CNN P4 CIFAR-10 - CNN

90 — "y 60 0.75 1.1
88 — %&_ 40 0.50 E//ff"": - M
0.25 0.7

86 20

90 — B U 60 0.04 — 1 0.9

84 20 0.00 0.5
0 20 40 60 80 100 0 20 40
Enoch Enoch §- 0.93 — 0.86 —
s s
poc poc _5 092 W 0.83 — W
Z 8
=< 091 - 0.80
——— SGD . 5
Momentum g 00 09
Adam E § 0.99 — 0.88 —
=< 0.98 — | 0.84 ‘ L
0 20 40 60 80 100 0 20 40 60 &80 100
Epochs Epochs
P5 F-MNIST - VAE P6 CIFAR 100 - AICNN C ~ P7 SVHN - Wide ResNet 16-4 P8 Tolstoi - Char RNN

70
45
20

70 2.3 — 0.25 — 1.25 —
s | 201 M o1 - N am %
20 1.7 0.05 1.15

0 20 40 60 80 100

2.6 — 0.45 1.30 — S ——

2.0 0.25 1.20

» 0.62 0.96 0.62 -
Epochs s

g
&< 052 : 0.94 0.60

5 075 - 1.00 — 0.64 —
g5 065 - W 0.99 0.63 o —
£< 055 0.98 ‘ ‘ L 0.62 [

0 100 200 300 0 50 100 150 0 50 100 150 200

Epochs Epochs Epochs

_images/performance_table.png
Test Problem SGD Momentum Adam Test Problem SGD Momentum Adam
Quadratic Speed F-MNIST ~ Speed
Deep Tuneability — «a: 1.58e-02 a: 2.51e-03 a: 3.98e-02 VAE Tuneability — «:3.98¢-03 a: 1.00e-05 «: 1.58e-04
1z 0.99 $1: 09 1z 0.99 $1: 0.9
B2 0.999 B2:0.999
e 1e-08 e 1e-08
P2 Performance 52.93 P6 Performance Z 56.15 %
MNIST Speed CIFAR-100 Speed 152.6
VAE Tuneability — «: 3.98¢-03 a: 2.51e-05 a: 1.58e-04 ALLCNN C Tuneability a: 3.98e-03
1z 0.99 $1:09 1z 0.99 $1: 0.9
B2: 0.999 B2: 0.999
e 1e-08 e 1e-08
P3 Performance 92.14 % P7 Performance
F-MNIST ~ Speed = SVHN Speed
CNN Tuneability a: 1.58e-01 a:2.51e-03 a:2.51e-04 Wide ResNet Tuneability a:251e-02 a:63le-04 a: 1.58e-04
1z 0.99 $1: 09 1z 0.99 $1: 0.9
B2 0.999 B2:0.999
e 1e-08 e 1e-08
P4 Performance P8 Performance
CIFAR-10 Speed ToLsTo1 Speed
CNN Tuneability — «: 6.31e-02 a: 3.98¢e-04 a: 3.98e-04 Char RNN Tuneability — «: 1.58e+00 a:3.98e-02 «:2.51e-03
1z 0.99 $1:09 1z 0.99 $1: 0.9
B2: 0.999 B2: 0.999
e 1e-08 e 1e-08

_images/deepobs_banner.png
DeepOW

_images/lr_sensitivity.png
Learning rate sensitivity

I s =N B = W

Learning Rate Learning Rate Learning Rate Learning Rate

_images/plot_lr_sensitivity.png
0.0

0.2

0.4

0.6

Learning Rate

0.8

10

0.0

0.2

0.4

0.6

Learning Rate

Learning rate sensitivity

0.8 10 0.0

0.2

0.4

0.6

Learning Rate

0.8

10

0.0

0.2

0.4

0.6

Learning Rate

0.8

10

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to DeepOBS

 		
 Quick Start

 		
 Installation

 		
 Set-Up Data Sets

 		
 Contributing to DeepOBS

 		
 Overview

 		
 Data Downloading

 		
 Data Loading

 		
 Model Loading

 		
 Runners

 		
 Baseline Results

 		
 Runtime Estimation

 		
 Visualization

 		
 Simple Example

 		
 Create new Run Script

 		
 Run new Optimizer

 		
 Get best Run

 		
 Plot Results

 		
 Suggested Protocol

 		
 Create new Run Script

 		
 Hyperparameter Search

 		
 Repeated Runs with best Setting

 		
 Plot Results

 		
 Data Sets

 		
 2D Data Set

 		
 Quadratic Data Set

 		
 MNIST Data Set

 		
 FMNIST Data Set

 		
 CIFAR-10 Data Set

 		
 CIFAR-100 Data Set

 		
 SVHN Data Set

 		
 ImageNet Data Set

 		
 Tolstoi Data Set

 		
 Test Problems

 		
 2D Test Problems

 		
 2D Beale

 		
 2D Branin

 		
 2D Rosenbrock

 		
 Quadratic Test Problems

 		
 Quadratic Deep

 		
 MNIST Test Problems

 		
 MNIST LogReg

 		
 MNIST MLP

 		
 MNIST 2c2d

 		
 MNIST VAE

 		
 Fashion-MNIST Test Problems

 		
 Fashion-MNIST LogReg

 		
 Fashion-MNIST MLP

 		
 Fashion-MNIST 2c2d

 		
 Fashion-MNIST VAE

 		
 CIFAR-10 Test Problems

 		
 CIFAR-10 3c3d

 		
 CIFAR-10 VGG16

 		
 CIFAR-10 VGG19

 		
 CIFAR-100 Test Problems

 		
 CIFAR-100 3c3d

 		
 CIFAR-100 VGG16

 		
 CIFAR-100 VGG19

 		
 CIFAR-100 All-CNN-C

 		
 CIFAR-100 WideResNet 40-4

 		
 SVHN Test Problems

 		
 SVHN 3c3d

 		
 SVHN WideResNet 16-4

 		
 ImageNet Test Problems

 		
 ImageNet VGG16

 		
 ImageNet VGG19

 		
 ImageNet Inception v3

 		
 Tolstoi Test Problems

 		
 Tolstoi Char RNN

 		
 Runner

 		
 Standard Runner

 		
 Analyzer

 		
 Analyzer

 		
 Test Problem Analyzer

 		
 Optimizer Analyzer

 		
 Setting Analyzer

 		
 Aggregate Run

 		
 Scripts

 		
 Prepare Data

 		
 Named Arguments

 		
 Estimate Runtime

 		
 Positional Arguments

 		
 Named Arguments

 		
 Plot Results

 		
 Positional Arguments

 		
 Named Arguments

_images/deepobs.jpg
Test

Train

Loss

Loss

70
45
20
70
45
20

P5 F-MNIST - VAE

0 20 40 60 &80 100
>
Epochs 8
7 8
&<
=
2
£ 3
<
£ 2

P6 CIFAR 100 - AllCNN C

"SRt

M
e
e

2.6
2.3
2.0
2.3
2.0
1.7
0.62
0.57
0.52
0.75
0.65
0.55

100

200
Epochs

300

P7 SVHN - Wide ResNet 16-4

0.45
0.35
0.25
0.25
0.15
0.05
0.96
0.95
0.94

1.00 —

0.99
0.98

50

|
100

Epochs

|
150

1.30
1.25
1.20
1.25
1.20
1.15
0.62
0.61
0.60
0.64
0.63
0.62

P8 Tolstoi - Char RNN

100
Epochs

150 200

_images/deepobs1.jpg
Test

Train

Loss

Loss

70
45
20
70
45
20

P5 F-MNIST - VAE

0 20 40 60 &80 100
>
Epochs 8
7 8
&<
=
2
£ 3
<
£ 2

P6 CIFAR 100 - AllCNN C

"SRt

M
e
e

2.6
2.3
2.0
2.3
2.0
1.7
0.62
0.57
0.52
0.75
0.65
0.55

100

200
Epochs

300

P7 SVHN - Wide ResNet 16-4

0.45
0.35
0.25
0.25
0.15
0.05
0.96
0.95
0.94

1.00 —

0.99
0.98

50

|
100

Epochs

|
150

1.30
1.25
1.20
1.25
1.20
1.15
0.62
0.61
0.60
0.64
0.63
0.62

P8 Tolstoi - Char RNN

100
Epochs

150 200

_static/minus.png

_images/ImageNetOutput.png
malamute, malemute, Alaskan malamute
" i q

canoe

beacon, lighthouse, beacon light, pharos

Crock Pot

.

dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk waffle iron

lighter, light, igniter, ignitor

marmoset

imagenet (train)

espresso maker

switch, electric switch, electrical switch
>

speedboat

sorrel

caldron, cauldron

wooden spoon

scabbard

stingray

tricycle, trike, velocipede

sea cucumber, holothurian

albatross, mollymawk

_static/plus.png

_static/up-pressed.png

_static/up.png

